All-aqueous (water-in-water) emulsions are increasingly used as droplets reactors. The present communication reports that precursors of a reaction segregated by partitioning between emulsion phases can undergo reaction at the interface, i.e., on droplet surface, while the interface remains liquid. Na2SO4-in-polyethylene glycol (PEG) emulsions were prepared, and precursors (glucose, asparagine, and tryptophan) of the Maillard reaction were partitioned either inside the droplets (co-encapsulation) or segregated between the emulsion interior and exterior phases. It was found that following the interfacial (i.e., on-droplet) reaction of the segregated precursors, 99 % of the Amadori product N-(1-deoxy-D-fructos-1-yl)-L-tryptophan (Fru-Trp) partitioned into the PEG phase. Also, hydrophobic advanced reaction products including β-carboline derivatives and Strecker aldehyde, alongside melanoidins, showed a clear affinity towards the PEG phase. Once the precursors were co-encapsulated within Na2SO4 droplets, following their generation succinimide and pyridine derivatives remained partitioned within the droplets, whereas N-hydroxysuccinimide, pyrrole derivatives, and melanoidins predominantly partitioned into the PEG phase.
Compartmentalization vs. segregation of reactants: Accomplishment of the Maillard reaction at the water-water interface
Antonio Dario Troise;Sabrina De Pascale;Andrea Scaloni;
2025
Abstract
All-aqueous (water-in-water) emulsions are increasingly used as droplets reactors. The present communication reports that precursors of a reaction segregated by partitioning between emulsion phases can undergo reaction at the interface, i.e., on droplet surface, while the interface remains liquid. Na2SO4-in-polyethylene glycol (PEG) emulsions were prepared, and precursors (glucose, asparagine, and tryptophan) of the Maillard reaction were partitioned either inside the droplets (co-encapsulation) or segregated between the emulsion interior and exterior phases. It was found that following the interfacial (i.e., on-droplet) reaction of the segregated precursors, 99 % of the Amadori product N-(1-deoxy-D-fructos-1-yl)-L-tryptophan (Fru-Trp) partitioned into the PEG phase. Also, hydrophobic advanced reaction products including β-carboline derivatives and Strecker aldehyde, alongside melanoidins, showed a clear affinity towards the PEG phase. Once the precursors were co-encapsulated within Na2SO4 droplets, following their generation succinimide and pyridine derivatives remained partitioned within the droplets, whereas N-hydroxysuccinimide, pyrrole derivatives, and melanoidins predominantly partitioned into the PEG phase.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0308814624037397-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.