By combining real-field observations and theoretical predictions, we describe role and relationships among north-propagating internal solitary waves (ISWs) generated by tidal currents in the Messina Strait (Mediterranean Sea), buoyancy deformation, sediment resuspension, and mixing effects. In particular, our results show that the presence of ISWs traveling along the Gioia Basin (north of the Strait) is not strictly related to seasonality. During winter, when the remote observation of ISWs from satellite is particularly rare due to the weak water column stratification, we observe elevation-type ISWs from hydrographic data. This finding reveals a different scenario with respect to the summer one, when the high stratified water column gives rise to depression-type north-propagating ISWs and the subsequent sea surface manifestations, detectable from satellite imagery. Moreover, our beam transmission observations and theoretical predictions of the induced near-bottom horizontal velocity suggest that these elevation-type ISWs induce sediment resuspension over the seafloor, as well as mixing effects as they break on the frontal slope nearby Capo Vaticano.
Sediment resuspension due to internal solitary waves of elevation in the Messina Strait (Mediterranean Sea)
La Forgia, Giovanni;Droghei, Riccardo;Pierdomenico, Martina;Falco, Pierpaolo;Martorelli, Eleonora;Bergamasco, Alessandro;Bergamasco, Andrea;Falcini, Federico
2023
Abstract
By combining real-field observations and theoretical predictions, we describe role and relationships among north-propagating internal solitary waves (ISWs) generated by tidal currents in the Messina Strait (Mediterranean Sea), buoyancy deformation, sediment resuspension, and mixing effects. In particular, our results show that the presence of ISWs traveling along the Gioia Basin (north of the Strait) is not strictly related to seasonality. During winter, when the remote observation of ISWs from satellite is particularly rare due to the weak water column stratification, we observe elevation-type ISWs from hydrographic data. This finding reveals a different scenario with respect to the summer one, when the high stratified water column gives rise to depression-type north-propagating ISWs and the subsequent sea surface manifestations, detectable from satellite imagery. Moreover, our beam transmission observations and theoretical predictions of the induced near-bottom horizontal velocity suggest that these elevation-type ISWs induce sediment resuspension over the seafloor, as well as mixing effects as they break on the frontal slope nearby Capo Vaticano.File | Dimensione | Formato | |
---|---|---|---|
Droghei et al_2023_Scientific Report.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.