Wireless technologies suitable for Search and Rescue (SaR) operations are becoming crucial for the success of such missions. In avalanche scenarios, the snow depth and the snowpack profile significantly influence the wireless propagation of technologies used to locate victims, such as ARVA (in French: appareil de recherche de victimes d’avalanche) systems. In this work, we explore the potential of LoRa technology under challenging realistic conditions. For the first time, we collect radiopropagation data and the contextual snow profile when the transmitter is buried over a 50×50 m area resembling a typical human-triggered avalanche. Specifically, we detail the methodology adopted to collect data through three test types: cross, maximum distance, and drone flyover. The data are annotated with accurate ground truth which allows evaluating localization algorithms based on the RSSI (received signal strength indicator) and SNR (signal-to-noise ratio) of LoRa units. We conducted tests under various environmental conditions, ranging from dry to wet snowpacks. Our results demonstrate the high quality of the LoRa channel, even when the target is buried at a depth of 1 meter in snow with a high liquid water content. At the same time, we quantify the effects of two main degrading factors for the LoRa propagation: the amount of the snow and the liquid water content existing in the snowpack profiles.

An experimental dataset for search and rescue operations in avalanche scenarios based on LoRa technology

Girolami M.;Mavilia F.
;
Berton A.;
2024

Abstract

Wireless technologies suitable for Search and Rescue (SaR) operations are becoming crucial for the success of such missions. In avalanche scenarios, the snow depth and the snowpack profile significantly influence the wireless propagation of technologies used to locate victims, such as ARVA (in French: appareil de recherche de victimes d’avalanche) systems. In this work, we explore the potential of LoRa technology under challenging realistic conditions. For the first time, we collect radiopropagation data and the contextual snow profile when the transmitter is buried over a 50×50 m area resembling a typical human-triggered avalanche. Specifically, we detail the methodology adopted to collect data through three test types: cross, maximum distance, and drone flyover. The data are annotated with accurate ground truth which allows evaluating localization algorithms based on the RSSI (received signal strength indicator) and SNR (signal-to-noise ratio) of LoRa units. We conducted tests under various environmental conditions, ranging from dry to wet snowpacks. Our results demonstrate the high quality of the LoRa channel, even when the target is buried at a depth of 1 meter in snow with a high liquid water content. At the same time, we quantify the effects of two main degrading factors for the LoRa propagation: the amount of the snow and the liquid water content existing in the snowpack profiles.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Antenna systems
ARVA
LoRa
Localization radiowave propagation
Search and rescue
Unmanned aerial vehicles
File in questo prodotto:
File Dimensione Formato  
Girolami et al_IEEE Access-2024.pdf

accesso aperto

Descrizione: An Experimental Dataset for Search and Rescue Operations in Avalanche Scenarios Based on LoRa Technology
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.08 MB
Formato Adobe PDF
4.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact