The presence of extended bi-dimensional defects is one of the key issues that hinder the use of wide band-gap materials hetero-epitaxially grown on silicon. In this work, we investigate, by STEM measurements and molecular dynamic simulations, the structure of two of the most important extended defect affecting the properties of cubic silicon carbide, 3C-SiC, hetero-epitaxially grown on (001) silicon substrates: (1) stacking faults (SFs) with their bounding threading dislocation arms, even along with unusual directions, and (2) inverted domain boundaries (IDBs). We found that these two defects are strictly correlated: IDBs lying in {111} planes are intrinsically coupled to one or more SFs. Moreover, we observed that threading partial dislocations (PDs), limiting the SFs, appear to have non-conventional line directions, such as [112], [123], and [134]. Molecular dynamics simulations show that [110] and [112] directions allow for stable dislocation structures, while in the unusual [123] and [134] directions, the PDs are composed of zig-zag dislocation lines in the [112] and [110] directions.

Extended defects in 3C-SiC: Stacking faults, threading partial dislocations, and inverted domain boundaries

Zimbone M.
;
Bongiorno C.;Scuderi V.;Calabretta C.;La Via F.
2021

Abstract

The presence of extended bi-dimensional defects is one of the key issues that hinder the use of wide band-gap materials hetero-epitaxially grown on silicon. In this work, we investigate, by STEM measurements and molecular dynamic simulations, the structure of two of the most important extended defect affecting the properties of cubic silicon carbide, 3C-SiC, hetero-epitaxially grown on (001) silicon substrates: (1) stacking faults (SFs) with their bounding threading dislocation arms, even along with unusual directions, and (2) inverted domain boundaries (IDBs). We found that these two defects are strictly correlated: IDBs lying in {111} planes are intrinsically coupled to one or more SFs. Moreover, we observed that threading partial dislocations (PDs), limiting the SFs, appear to have non-conventional line directions, such as [112], [123], and [134]. Molecular dynamics simulations show that [110] and [112] directions allow for stable dislocation structures, while in the unusual [123] and [134] directions, the PDs are composed of zig-zag dislocation lines in the [112] and [110] directions.
2021
Istituto per la Microelettronica e Microsistemi - IMM
3C-SiC
Inverted domain boundaries
Molecular dynamics simulations
Stacking faults
TEM study
File in questo prodotto:
File Dimensione Formato  
Zimbone SF dislocations IDB.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact