This work focuses on the synthesis and gas sensing properties of ZnO nanowalls (ZnO NWLs) grown by a simple cheap chemical bath deposition method on a thin layer of aluminum (about 20 nm thick) printed on the Pt interdigitated electrodes area of conductometric alumina platforms. Post-deposition annealing in nitrogen atmosphere at 300 °C enabled the formation of a ZnO intertwined 2D foils network. A wide characterization was carried out to investigate the composition, morphology and microstructure of the nanowalls layer formed. The gas sensing properties of the films were studied by measuring the changes of electrical resistance upon exposure to low concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) in air. The sensor response to CO or NO2 was found to be strongly dependent on the operating temperature, providing a means to tailor the sensitivity and selectivity toward these selected target gases.

Comparison of the Sensing Properties of ZnO Nanowalls-Based Sensors toward Low Concentrations of CO and NO2

Bruno, Elena;Strano, Vincenzina;Mirabella, Salvatore;Leonardi, Salvatore;
2017

Abstract

This work focuses on the synthesis and gas sensing properties of ZnO nanowalls (ZnO NWLs) grown by a simple cheap chemical bath deposition method on a thin layer of aluminum (about 20 nm thick) printed on the Pt interdigitated electrodes area of conductometric alumina platforms. Post-deposition annealing in nitrogen atmosphere at 300 °C enabled the formation of a ZnO intertwined 2D foils network. A wide characterization was carried out to investigate the composition, morphology and microstructure of the nanowalls layer formed. The gas sensing properties of the films were studied by measuring the changes of electrical resistance upon exposure to low concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) in air. The sensor response to CO or NO2 was found to be strongly dependent on the operating temperature, providing a means to tailor the sensitivity and selectivity toward these selected target gases.
2017
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Tecnologie Avanzate per l'Energia - ITAE
CO sensor
Conductometric sensor
Nanowalls
NO2
sensor
ZnO
File in questo prodotto:
File Dimensione Formato  
14_Bruno_chemosensors2017.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact