This paper presents a reliability study of a conventional 650 V SiC planar MOSFET subjected to pulsed HTRB (High-Temperature Reverse Bias) stress and negative HTGB (High-Temperature Gate Bias) stress defined by a TCAD static simulation showing the electric field distribution across the SiC/SiO2 interface. The instability of several electrical parameters was monitored and their drift analyses were investigated. Moreover, the shift of the onset of the Fowler–Nordheim gate injection current under stress conditions provided a reliable method to quantify the trapped charge inside the gate oxide bulk, and it allowed us to determine the real stress conditions. Moreover, it has been demonstrated from the cross-correlation, the TCAD simulation, and the experimental ΔVth and ΔVFN variation that HTGB stress is more severe compared to HTRB. In fact, HTGB showed a 15% variation in both ΔVth and ΔVFN, while HTRB showed only a 4% variation in both ΔVth and ΔVFN. The physical explanation was attributed to the accelerated degradation of the gate insulator in proximity to the source region under HTGB configuration.
4H-SiC MOSFET Threshold Voltage Instability Evaluated via Pulsed High-Temperature Reverse Bias and Negative Gate Bias Stresses
Fiorenza, Patrick;Roccaforte, Fabrizio
2024
Abstract
This paper presents a reliability study of a conventional 650 V SiC planar MOSFET subjected to pulsed HTRB (High-Temperature Reverse Bias) stress and negative HTGB (High-Temperature Gate Bias) stress defined by a TCAD static simulation showing the electric field distribution across the SiC/SiO2 interface. The instability of several electrical parameters was monitored and their drift analyses were investigated. Moreover, the shift of the onset of the Fowler–Nordheim gate injection current under stress conditions provided a reliable method to quantify the trapped charge inside the gate oxide bulk, and it allowed us to determine the real stress conditions. Moreover, it has been demonstrated from the cross-correlation, the TCAD simulation, and the experimental ΔVth and ΔVFN variation that HTGB stress is more severe compared to HTRB. In fact, HTGB showed a 15% variation in both ΔVth and ΔVFN, while HTRB showed only a 4% variation in both ΔVth and ΔVFN. The physical explanation was attributed to the accelerated degradation of the gate insulator in proximity to the source region under HTGB configuration.File | Dimensione | Formato | |
---|---|---|---|
materials2024.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.35 MB
Formato
Adobe PDF
|
4.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.