Ammonia (NH3) is widely used in various fields, and it is also considered a promising carbon free energy carrier, due to its high hydrogen content. The nitrogen reduction reaction (NRR), which converts nitrogen into ammonia by using protons from water as the hydrogen source, is receiving a lot of attention, since effective process optimization would make it possible to overcome the Haber–Bosch method. In this study, we used a solution-based approach to obtain functionalized porous Ni foam substrates with a small amount of gold (<0.1 mg cm−1). We investigated several deposition conditions and obtained different morphologies. The electrochemical performance of various catalysts on the hydrogen evolution reaction (HER) and NRR has been characterized. The ammonia production yield was determined by chronoamperometry experiments at several potentials, and the results showed a maximum ammonia yield rate of 20 µg h−1 mgcat−1 and a Faradaic efficiency of 5.22%. This study demonstrates the potential of gold-based catalysts for sustainable ammonia production and highlights the importance of optimizing deposition conditions to improve the selectivity toward HER.

Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry

Tranchida, Giuseppe;Milazzo, Rachela;Leonardi, Marco;Scalese, Silvia;Farina, Roberta;Lombardo, Salvatore;Privitera, Stefania
2023

Abstract

Ammonia (NH3) is widely used in various fields, and it is also considered a promising carbon free energy carrier, due to its high hydrogen content. The nitrogen reduction reaction (NRR), which converts nitrogen into ammonia by using protons from water as the hydrogen source, is receiving a lot of attention, since effective process optimization would make it possible to overcome the Haber–Bosch method. In this study, we used a solution-based approach to obtain functionalized porous Ni foam substrates with a small amount of gold (<0.1 mg cm−1). We investigated several deposition conditions and obtained different morphologies. The electrochemical performance of various catalysts on the hydrogen evolution reaction (HER) and NRR has been characterized. The ammonia production yield was determined by chronoamperometry experiments at several potentials, and the results showed a maximum ammonia yield rate of 20 µg h−1 mgcat−1 and a Faradaic efficiency of 5.22%. This study demonstrates the potential of gold-based catalysts for sustainable ammonia production and highlights the importance of optimizing deposition conditions to improve the selectivity toward HER.
2023
Istituto per la Microelettronica e Microsistemi - IMM
ammonia synthesis
catalysts
gold nanoparticles
nitrogen electroreduction
File in questo prodotto:
File Dimensione Formato  
nanomaterials.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact