Since 2013, 34 surveys of surface and ground waters within and outside the former Hg-mine of Abbadia San Salvatore (Italy), which is currently under remediation, were performed for determining Hg, As, Sb, and main and minor solutes. The water quality is rather poor since most waters show relatively high Hg concentrations (up to 695 µg/L). Differently, As and Sb only overcome the Italian law thresholds in a few sites. A high geochemical variability was observed for most groundwaters without any clear relationship between wet and dry periods. The main source of chalcophile elements is likely related to: (i) the interaction between meteoric waters and soils contaminated by the previous production of mercury; or (ii) the interaction between meteoric waters and the anthropic filling material of a former paleo-valley near the furnaces edifices. While the remediation is expected to be concluded in 2025, the aquifer contamination still remains a problem. Our investigation, including geochemical/hydrogeological modeling, is prodromal to future activities aimed at reducing the Hg content. Currently, the construction of a hydraulic barrier is apparently the most suitable solution to minimize the interaction processes between water–rock and man-made material, which are responsible for the 10-year concentration variability.

Geochemical Surveys of Ground and Surface Waters in the Abandoned Hg-Mine of Abbadia San Salvatore (Central Italy): A Preparatory Investigation before Remediation

Meloni F.
;
Montegrossi G.;Cabassi J.;Nisi B.;Vaselli O.
2024

Abstract

Since 2013, 34 surveys of surface and ground waters within and outside the former Hg-mine of Abbadia San Salvatore (Italy), which is currently under remediation, were performed for determining Hg, As, Sb, and main and minor solutes. The water quality is rather poor since most waters show relatively high Hg concentrations (up to 695 µg/L). Differently, As and Sb only overcome the Italian law thresholds in a few sites. A high geochemical variability was observed for most groundwaters without any clear relationship between wet and dry periods. The main source of chalcophile elements is likely related to: (i) the interaction between meteoric waters and soils contaminated by the previous production of mercury; or (ii) the interaction between meteoric waters and the anthropic filling material of a former paleo-valley near the furnaces edifices. While the remediation is expected to be concluded in 2025, the aquifer contamination still remains a problem. Our investigation, including geochemical/hydrogeological modeling, is prodromal to future activities aimed at reducing the Hg content. Currently, the construction of a hydraulic barrier is apparently the most suitable solution to minimize the interaction processes between water–rock and man-made material, which are responsible for the 10-year concentration variability.
2024
Istituto di Geoscienze e Georisorse - IGG - Sede Secondaria Firenze
chalcophile elements,
Hg-mine,
remediation,
water monitoring
File in questo prodotto:
File Dimensione Formato  
water-16-01210.pdf

accesso aperto

Descrizione: Geochemical Surveys of Ground and Surface Waters in the Abandoned Hg-Mine of Abbadia San Salvatore (Central Italy): APreparatory Investigation before Remediation
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.93 MB
Formato Adobe PDF
7.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact