During alcoholic fermentation, ethanol accumulation significantly impacts yeast cells by disrupting membrane integrity, increasing permeability, and reducing cell viability. This study evaluated the effects of ethanol stress on the growth, membrane fluidity, and cell surface morphology of Saccharomyces cerevisiae and non-Saccharomyces yeast strains, specifically Torulaspora delbrueckii and Metschnikowia pulcherrima. These strains, commercialized by AEB SpA and preserved at the Unimore Microbial Culture Collection (UMCC), were tested for fermentative performance in grape must and grown under varying ethanol concentrations. Membrane fluidity was measured using Laurdan generalized polarization (GP), while Atomic Force Microscopy (AFM) assessed cell surface morphology. Results indicated that at 10% ethanol, membrane fluidity increased, particularly in strains able to tolerate up to 16% ethanol, which also demonstrated superior fermentative performance. Less tolerant strains, such as T. delbrueckii UMCC 5 and M. pulcherrima UMCC 15, showed smaller increases in fluidity. At 18% ethanol, these strains exhibited severely altered surface morphology and larger surface roughness values, suggesting increased instability under high ethanol stress, while more tolerant strains displayed better-preserved surface morphology and lower roughness values, reflecting enhanced adaptability. These findings offer insights into yeast responses to ethanol stress, supporting the development of more resilient strains for improved fermentation

Wine Yeast Strains Under Ethanol-Induced Stress: Morphological and Physiological Responses

Luciana De Vero;Andrea Mescola;Andrea Alessandrini;Andrea Pulvirenti;
2024

Abstract

During alcoholic fermentation, ethanol accumulation significantly impacts yeast cells by disrupting membrane integrity, increasing permeability, and reducing cell viability. This study evaluated the effects of ethanol stress on the growth, membrane fluidity, and cell surface morphology of Saccharomyces cerevisiae and non-Saccharomyces yeast strains, specifically Torulaspora delbrueckii and Metschnikowia pulcherrima. These strains, commercialized by AEB SpA and preserved at the Unimore Microbial Culture Collection (UMCC), were tested for fermentative performance in grape must and grown under varying ethanol concentrations. Membrane fluidity was measured using Laurdan generalized polarization (GP), while Atomic Force Microscopy (AFM) assessed cell surface morphology. Results indicated that at 10% ethanol, membrane fluidity increased, particularly in strains able to tolerate up to 16% ethanol, which also demonstrated superior fermentative performance. Less tolerant strains, such as T. delbrueckii UMCC 5 and M. pulcherrima UMCC 15, showed smaller increases in fluidity. At 18% ethanol, these strains exhibited severely altered surface morphology and larger surface roughness values, suggesting increased instability under high ethanol stress, while more tolerant strains displayed better-preserved surface morphology and lower roughness values, reflecting enhanced adaptability. These findings offer insights into yeast responses to ethanol stress, supporting the development of more resilient strains for improved fermentation
2024
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Istituto di Scienze delle Produzioni Alimentari - ISPA
Istituto di Bioscienze e Biorisorse - IBBR
ethanol stress, alcoholic fermentation, yeast strains, membrane fluidity, Saccharomyces cerevisiae, non-Saccharomyces yeasts, fermentative performance
File in questo prodotto:
File Dimensione Formato  
fermentation-10-00631-1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact