Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
Galaxy (https://galaxyproject.org) is deployed globally, predominantly through free-to-use services, supporting user-driven research that broadens in scope each year. Users are attracted to public Galaxy services by platform stability, tool and reference dataset diversity, training, support and integration, which enables complex, reproducible, shareable data analysis. Applying the principles of user experience design (UXD), has driven improvements in accessibility, tool discoverability through Galaxy Labs/subdomains, and a redesigned Galaxy ToolShed. Galaxy tool capabilities are progressing in two strategic directions: integrating general purpose graphical processing units (GPGPU) access for cutting-edge methods, and licensed tool support. Engagement with global research consortia is being increased by developing more workflows in Galaxy and by resourcing the public Galaxy services to run them. The Galaxy Training Network (GTN) portfolio has grown in both size, and accessibility, through learning paths and direct integration with Galaxy tools that feature in training courses. Code development continues in line with the Galaxy Project roadmap, with improvements to job scheduling and the user interface. Environmental impact assessment is also helping engage users and developers, reminding them of their role in sustainability, by displaying estimated CO2 emissions generated by each Galaxy job.
The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update
Linelle Ann L Abueg;Enis Afgan;Olivier Allart;Ahmed H Awan;Wendi A Bacon;Dannon Baker;Madeline Bassetti;Bérénice Batut;Matthias Bernt;Daniel Blankenberg;Aureliano Bombarely;Anthony Bretaudeau;Catherine J Bromhead;Melissa L Burke;Patrick K Capon;Martin Čech;María Chavero-Díez;John M Chilton;Tyler J Collins;Frederik Coppens;Nate Coraor;Gianmauro Cuccuru;Fabio Cumbo;John Davis;Paul F De Geest;Willem de Koning;Martin Demko;Assunta DeSanto;José Manuel Domínguez Begines;Maria A Doyle;Bert Droesbeke;Anika Erxleben-Eggenhofer;Melanie C Föll;Giulio Formenti;Anne Fouilloux;Rendani Gangazhe;Tanguy Genthon;Jeremy Goecks;Alejandra N Gonzalez Beltran;Nuwan A Goonasekera;Nadia Goué;Timothy J Griffin;Björn A Grüning
;Aysam Guerler;Sveinung Gundersen;Ove Johan Ragnar Gustafsson;Christina Hall;Thomas W Harrop;Helge Hecht;Alireza Heidari;Tillman Heisner;Florian Heyl;Saskia Hiltemann;Hans-Rudolf Hotz;Cameron J Hyde;Pratik D Jagtap;Julia Jakiela;James E Johnson;Jayadev Joshi;Marie Jossé;Khaled Jum’ah;Matúš Kalaš;Katarzyna Kamieniecka;Tunc Kayikcioglu;Markus Konkol;Leonid Kostrykin;Natalie Kucher;Anup Kumar;Mira Kuntz;Delphine Lariviere;Ross Lazarus;Yvan Le Bras;Gildas Le Corguillé;Justin Lee;Simone Leo;Leandro Liborio;Romane Libouban;David López Tabernero;Lucille Lopez-Delisle;Laila S Los;Alexandru Mahmoud;Igor Makunin;Pierre Marin;Subina Mehta;Winnie Mok;Pablo A Moreno;François Morier-Genoud;Stephen Mosher;Teresa Müller;Engy Nasr;Anton Nekrutenko
;Tiffanie M Nelson;Asime J Oba;Alexander Ostrovsky;Polina V Polunina;Krzysztof Poterlowicz;Elliott J Price;Gareth R Price;Helena Rasche;Bryan Raubenolt;Coline Royaux;Luke Sargent;Michelle T Savage;Volodymyr Savchenko;Denys Savchenko;Michael C Schatz
;Pauline Seguineau;Beatriz Serrano-Solano;Nicola Soranzo;Sanjay Kumar Srikakulam;Keith Suderman;Anna E Syme;Marco Antonio Tangaro;Jonathan A Tedds;Mehmet Tekman;Wai Cheng (Mike) Thang;Anil S Thanki;Michael Uhl;Marius van den Beek;Deepti Varshney;Jenn Vessio;Pavankumar Videm;Greg Von Kuster;Gregory R Watson;Natalie Whitaker-Allen;Uwe Winter;Martin Wolstencroft;Federico Zambelli;Paul Zierep;Rand Zoabi
2024
Abstract
Galaxy (https://galaxyproject.org) is deployed globally, predominantly through free-to-use services, supporting user-driven research that broadens in scope each year. Users are attracted to public Galaxy services by platform stability, tool and reference dataset diversity, training, support and integration, which enables complex, reproducible, shareable data analysis. Applying the principles of user experience design (UXD), has driven improvements in accessibility, tool discoverability through Galaxy Labs/subdomains, and a redesigned Galaxy ToolShed. Galaxy tool capabilities are progressing in two strategic directions: integrating general purpose graphical processing units (GPGPU) access for cutting-edge methods, and licensed tool support. Engagement with global research consortia is being increased by developing more workflows in Galaxy and by resourcing the public Galaxy services to run them. The Galaxy Training Network (GTN) portfolio has grown in both size, and accessibility, through learning paths and direct integration with Galaxy tools that feature in training courses. Code development continues in line with the Galaxy Project roadmap, with improvements to job scheduling and the user interface. Environmental impact assessment is also helping engage users and developers, reminding them of their role in sustainability, by displaying estimated CO2 emissions generated by each Galaxy job.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/525723
Citazioni
ND
45
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.