The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling. The approach enables to forecast the intrinsic stability of the cathodes and discriminate the reaction pathways associated with interfacial electronic charge-transfer mechanisms. Specifically, light is shed on the evolution of cationic and anionic redox in high-energy density lithium-rich 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 (HE-NCM) cathodes, particularly those that undergo surface modification through SO2 and NH3 double-gas treatment to suppress the structural degradation. The chemical composition and energy distribution of the occupied and unoccupied electronic states at the different charging/discharging states are quantitatively estimated by using advanced spectroscopy techniques, including operando Raman spectroscopy. The concept is successfully demonstrated in designing artificial interfaces for high-voltage olivine structure cathodes enabling stable battery operation up to 5.1 V versus Li+/Li.
Novel Insights into Enhanced Stability of Li‐Rich Layered and High‐Voltage Olivine Phosphate Cathodes for Advanced Batteries through Surface Modification and Electron Structure Design
Píš, Igor;Nappini, Silvia;Magnano, Elena;Bondino, Federica;
2024
Abstract
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling. The approach enables to forecast the intrinsic stability of the cathodes and discriminate the reaction pathways associated with interfacial electronic charge-transfer mechanisms. Specifically, light is shed on the evolution of cationic and anionic redox in high-energy density lithium-rich 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 (HE-NCM) cathodes, particularly those that undergo surface modification through SO2 and NH3 double-gas treatment to suppress the structural degradation. The chemical composition and energy distribution of the occupied and unoccupied electronic states at the different charging/discharging states are quantitatively estimated by using advanced spectroscopy techniques, including operando Raman spectroscopy. The concept is successfully demonstrated in designing artificial interfaces for high-voltage olivine structure cathodes enabling stable battery operation up to 5.1 V versus Li+/Li.File | Dimensione | Formato | |
---|---|---|---|
Zhili_Advanced Science_2024.pdf
accesso aperto
Descrizione: Full length article
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.23 MB
Formato
Adobe PDF
|
5.23 MB | Adobe PDF | Visualizza/Apri |
Zhili_Advanced Science_2024_SI.pdf
accesso aperto
Descrizione: Supporting Information
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.24 MB
Formato
Adobe PDF
|
4.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.