Protein-polymer conjugates are a promising class of biohybrids. In this work, the dynamics of a set of biodegradable conjugates myoglobin-poly(ethyl ethylene phosphate) (My-PEEP) with variations in the number of attached polymers and their molar mass in the dry-state, have been investigated to understand the role of polymer on protein dynamics. We performed Differential Scanning Calorimetry measurements between 190 and 300 K, observing the large-scale dynamics arising from reorganization of conformational states, i.e. within the 100 s timescale. The application of an annealing time during the cooling scans was used to investigate the non-equilibrium glassy-state of the samples, observing the relaxation enthalpy at different annealing temperatures. This procedure permitted to extensively describe the transition broadness and the system relaxation kinetics in the glassy state. The samples show an experimental behaviour different from the theoretical predictions, suggesting the establishment of interactions among the protein and the polymer chains. The different behaviour of the conjugates and the physical mixture (composed of the protein and the polymer physically mixed) highlighted the importance of the covalent bond in defining the system dynamics.

Unfreezing of molecular motions in protein-polymer conjugates: a calorimetric study

Pelosi, C.
Primo
Membro del Collaboration Group
;
Tombari, E.
Secondo
Membro del Collaboration Group
;
2022

Abstract

Protein-polymer conjugates are a promising class of biohybrids. In this work, the dynamics of a set of biodegradable conjugates myoglobin-poly(ethyl ethylene phosphate) (My-PEEP) with variations in the number of attached polymers and their molar mass in the dry-state, have been investigated to understand the role of polymer on protein dynamics. We performed Differential Scanning Calorimetry measurements between 190 and 300 K, observing the large-scale dynamics arising from reorganization of conformational states, i.e. within the 100 s timescale. The application of an annealing time during the cooling scans was used to investigate the non-equilibrium glassy-state of the samples, observing the relaxation enthalpy at different annealing temperatures. This procedure permitted to extensively describe the transition broadness and the system relaxation kinetics in the glassy state. The samples show an experimental behaviour different from the theoretical predictions, suggesting the establishment of interactions among the protein and the polymer chains. The different behaviour of the conjugates and the physical mixture (composed of the protein and the polymer physically mixed) highlighted the importance of the covalent bond in defining the system dynamics.
2022
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Pisa
polymers
File in questo prodotto:
File Dimensione Formato  
s10973-022-11437-x.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact