Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn’s disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.

Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date

Giammona A.;Galuzzi B. G.;Gervasoni C.;Remedia S.;Restaneo L.;Nespoli M.;De Gara L.;Tani F.;Porro D.;Cerasa A.;Lo Dico A.;Bertoli G.
2024

Abstract

Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn’s disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.
2024
Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC)
apoptosis
colorectal cancer
hallmarks of IBD/IBS
inflammation
inflammatory bowel disease
microRNA
oxidative stress
File in questo prodotto:
File Dimensione Formato  
manuscript proof.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact