Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or non-PDO buffalo milk in PDO dairy buffalo products. Peripheral laboratories use gel electrophoresis combined with polyclonal antipeptide antibodies for initial screening, enabling the detection of foreign caseins, including those originating outside the PDO-designated regions. For more precise identification, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) differentiates species by detecting proteotypic peptides. In cases requiring confirmation, nano-liquid chromatography coupled to electrospray tandem mass spectrometry (nano-LC-ESI-MS/MS) is used in central state laboratories for the highly sensitive detection of extraneous milk proteins in PDO buffalo MdBC cheese. On the other hand, analysis of the pH 4.6 soluble fraction from buffalo blue cheese identified 2828 buffalo-derived peptides and several bovine specific peptides, confirming milk adulteration. Despite a lower detection extent in the pH 4.6 insoluble fraction following tryptic hydrolysis, the presence of bovine peptides was still sufficient to verify fraud. This integrated proteomic approach, which combines electrophoresis and mass spectrometry technologies, significantly improves milk adulteration detection, providing a robust tool to face increasingly sophisticated fraudulent practices.

Integrated Gel Electrophoresis and Mass Spectrometry Approach for Detecting and Quantifying Extraneous Milk in Protected Designation of Origin Buffalo Mozzarella Cheese

Sabrina De Pascale
Primo
;
Andrea Scaloni;Simonetta Caira
Ultimo
;
2025

Abstract

Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or non-PDO buffalo milk in PDO dairy buffalo products. Peripheral laboratories use gel electrophoresis combined with polyclonal antipeptide antibodies for initial screening, enabling the detection of foreign caseins, including those originating outside the PDO-designated regions. For more precise identification, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) differentiates species by detecting proteotypic peptides. In cases requiring confirmation, nano-liquid chromatography coupled to electrospray tandem mass spectrometry (nano-LC-ESI-MS/MS) is used in central state laboratories for the highly sensitive detection of extraneous milk proteins in PDO buffalo MdBC cheese. On the other hand, analysis of the pH 4.6 soluble fraction from buffalo blue cheese identified 2828 buffalo-derived peptides and several bovine specific peptides, confirming milk adulteration. Despite a lower detection extent in the pH 4.6 insoluble fraction following tryptic hydrolysis, the presence of bovine peptides was still sufficient to verify fraud. This integrated proteomic approach, which combines electrophoresis and mass spectrometry technologies, significantly improves milk adulteration detection, providing a robust tool to face increasingly sophisticated fraudulent practices.
2025
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
buffalo milk adulteration
food forensic science
gel electrophoresis
MALDI-TOF-MS
nano-LC-ESI-MS/MS
peptidomics
proteomics
File in questo prodotto:
File Dimensione Formato  
De Pascale 2025 Integrated.pdf

accesso aperto

Descrizione: Integrated Gel Electrophoresis and Mass Spectrometry Approach for Detecting and Quantifying Extraneous Milk in Protected Designation of Origin Buffalo Mozzarella Cheese
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact