In this work, a methodology, based on a self-organization process, to form gold nanoclusters on the 6H-SiC surface, is illustrated. By scanning electron microscopy and atomic force microscopy the gold self-organization induced by annealing processes was studied and modelled by classical limited surface diffusion ripening theories. These studies allowed us to fabricate Au nanoclusres/SiC nanostructured materials with tunable structural properties. The local electrical properties of such a nanostructured material were probed, by conductive atomic force microscopy collecting high statistics of IN curves. The main observed result was the Schottky barrier height (SBH) dependence on the cluster size. This behaviour is interpreted considering the physics of few electron quantum dots merged with the ballistic transport. A quite satisfying agreement between the theoretical forecast behaviour and the experimental data has been found.

Clustering of gold on 6H-SiC and local nanoscale electrical properties

Ruffino F;Giannazzo F;Roccaforte F;Raineri V;
2008

Abstract

In this work, a methodology, based on a self-organization process, to form gold nanoclusters on the 6H-SiC surface, is illustrated. By scanning electron microscopy and atomic force microscopy the gold self-organization induced by annealing processes was studied and modelled by classical limited surface diffusion ripening theories. These studies allowed us to fabricate Au nanoclusres/SiC nanostructured materials with tunable structural properties. The local electrical properties of such a nanostructured material were probed, by conductive atomic force microscopy collecting high statistics of IN curves. The main observed result was the Schottky barrier height (SBH) dependence on the cluster size. This behaviour is interpreted considering the physics of few electron quantum dots merged with the ballistic transport. A quite satisfying agreement between the theoretical forecast behaviour and the experimental data has been found.
2008
Istituto per la Microelettronica e Microsistemi - IMM
silicon carbide
gold
self-organization
nano-Schottky diode
conductive atomic force microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/143426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact