n this work, we focus our attention on the characterization of 3C-SiC films, grown within a CVD reactor, on Si substrates. It will be shown how the growth procedures influence the SiC film structure and quality with the growth rate used during the growth used as example. Evaluation of crystal structure has been conducted by X-Ray Diffraction (XRD), Raman microscopy and Transmission Electron Microscopy (TEM). Overall film quality increases if films are grown under low growth rate conditions, thanks also to an important reduction in the density of micro-twins. The trend of the full widths at half maximum (FWHMs) of SiC rocking curves, considered good 'quality indicator' as their broadenings are affected by crystallographic defects, as a function of 3C-SiC thickness shows a saturated regime for very thick films, due to the saturation of stacking fault density after 50 ?m of growth. This work wants to suggest a reasonable path for the characterization of the material structure that can be useful, anywhere and in any time, to assess if the morphology and microstructure of our films are satisfactory and to drive towards the desired improvement.

Structural characterization of heteroepitaxial 3C-SiC

Anzalone R;Piluso N;La Via;
2012

Abstract

n this work, we focus our attention on the characterization of 3C-SiC films, grown within a CVD reactor, on Si substrates. It will be shown how the growth procedures influence the SiC film structure and quality with the growth rate used during the growth used as example. Evaluation of crystal structure has been conducted by X-Ray Diffraction (XRD), Raman microscopy and Transmission Electron Microscopy (TEM). Overall film quality increases if films are grown under low growth rate conditions, thanks also to an important reduction in the density of micro-twins. The trend of the full widths at half maximum (FWHMs) of SiC rocking curves, considered good 'quality indicator' as their broadenings are affected by crystallographic defects, as a function of 3C-SiC thickness shows a saturated regime for very thick films, due to the saturation of stacking fault density after 50 ?m of growth. This work wants to suggest a reasonable path for the characterization of the material structure that can be useful, anywhere and in any time, to assess if the morphology and microstructure of our films are satisfactory and to drive towards the desired improvement.
2012
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/174029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact