The probiotic yeast, Saccharomyces cerevisiae boulardii, was microencapsulated in a mixture of alginate-inulin-xanthan gum, and its ability to grow in berry juice and survive 4 weeks of storage at 4 degrees C was determined. Exposure of the yeast in these forms to artificial gastrointestinal conditions was also assessed. Encapsulation significantly enhanced cell viability after fermentation and storage compared with the free yeast (7.59 log(10) colony forming units/ml versus 6.98 log(10) colony forming units/ml, respectively) and protected it from exposure to a simulated gastrointestinal transit after 4 weeks of storage. Conversely, a dramatic loss of viability was exhibited by free yeast after 4 weeks of storage, and viability values closer to zero (0.23 log(10) cfu/ml) were found after the simulated gastrointestinal treatment. Microcapsules were capable of absorbing a certain amount of polyphenols and anthocyanins. This work, based on use of microencapsulated probiotic yeasts, might represent the starting point for the development of new functional foods or functional ingredients. Microcapsules were capable to absorb, from berry juice, a certain amount of anthocyanins which, maintaining their native form after the in vitro gastrointestinal transit, might in vivo therein be transformed into other, simpler molecules, with beneficial effect on microflora and human health too.

Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions

Fratianni Florinda;Cardinale Federica;Coppola Raffaele;Nazzaro Filomena
2014

Abstract

The probiotic yeast, Saccharomyces cerevisiae boulardii, was microencapsulated in a mixture of alginate-inulin-xanthan gum, and its ability to grow in berry juice and survive 4 weeks of storage at 4 degrees C was determined. Exposure of the yeast in these forms to artificial gastrointestinal conditions was also assessed. Encapsulation significantly enhanced cell viability after fermentation and storage compared with the free yeast (7.59 log(10) colony forming units/ml versus 6.98 log(10) colony forming units/ml, respectively) and protected it from exposure to a simulated gastrointestinal transit after 4 weeks of storage. Conversely, a dramatic loss of viability was exhibited by free yeast after 4 weeks of storage, and viability values closer to zero (0.23 log(10) cfu/ml) were found after the simulated gastrointestinal treatment. Microcapsules were capable of absorbing a certain amount of polyphenols and anthocyanins. This work, based on use of microencapsulated probiotic yeasts, might represent the starting point for the development of new functional foods or functional ingredients. Microcapsules were capable to absorb, from berry juice, a certain amount of anthocyanins which, maintaining their native form after the in vitro gastrointestinal transit, might in vivo therein be transformed into other, simpler molecules, with beneficial effect on microflora and human health too.
2014
Istituto di Scienze dell'Alimentazione - ISA
Microencapsulation
polyphenols
prebiotic
probiotic
Saccharomyces boulardii
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/228404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact