The study is aimed at developing a new cereal-based product, with increased nutritional quality, by using natural fermentation of blends of chestnut and rye flour. In spite of the remarkable similarity, the technological potential of combinations of both flours has never been explored before. Three spontaneous chestnut/rye sourdough fermentations were performed over a period of twelve days with daily back-slopping. Samples taken at all refreshment steps were used for culture-dependent and culture-independent evaluation of the microbiota present. Dominant species basically overlapped to those associated to sourdoughs strengthened with chestnut flour, such as Pediococcus pentosaceus or Weissella paramesenteroides. Microstructures, evaluated by means of Scanning Electron Microscopy, revealed the presence in chestnut sourdoughs of a distinguishable network surrounding starch granules, while rye flour-added sourdoughs showed a less structured matrix. By gas chromatography coupled to mass spectrometry, 51 volatile organic compounds were identified at 24 h and after prolonged fermentation. Within volatile organic compounds, alcohols, esters, acids, aldehydes and ketones, all well-known flavour compounds in sourdough fermentation, appeared as dominant. The PCA discriminated the sourdoughs into three distinct clusters and highlighted a clear influence of fermentation time on the volatile composition of sourdoughs. (C) 2014 Elsevier Ltd. All rights reserved.
Effects of fermentation and rye flour on microstructure and volatile compounds of chestnut flour based sourdoughs
Boscaino Floriana;Sorrentino Alida;Coppola Raffaele;
2014
Abstract
The study is aimed at developing a new cereal-based product, with increased nutritional quality, by using natural fermentation of blends of chestnut and rye flour. In spite of the remarkable similarity, the technological potential of combinations of both flours has never been explored before. Three spontaneous chestnut/rye sourdough fermentations were performed over a period of twelve days with daily back-slopping. Samples taken at all refreshment steps were used for culture-dependent and culture-independent evaluation of the microbiota present. Dominant species basically overlapped to those associated to sourdoughs strengthened with chestnut flour, such as Pediococcus pentosaceus or Weissella paramesenteroides. Microstructures, evaluated by means of Scanning Electron Microscopy, revealed the presence in chestnut sourdoughs of a distinguishable network surrounding starch granules, while rye flour-added sourdoughs showed a less structured matrix. By gas chromatography coupled to mass spectrometry, 51 volatile organic compounds were identified at 24 h and after prolonged fermentation. Within volatile organic compounds, alcohols, esters, acids, aldehydes and ketones, all well-known flavour compounds in sourdough fermentation, appeared as dominant. The PCA discriminated the sourdoughs into three distinct clusters and highlighted a clear influence of fermentation time on the volatile composition of sourdoughs. (C) 2014 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.