In this paper, the electronic transport in epitaxial graphene (EG) grown on the Si face of 8° off-axis 4H-SiC has been investigated, using both electrical characterization of macroscopic devices and conductive atomic force microscopy (CAFM). In particular, current measurements on linear transmission line model (TLM) structures with different orientations showed a current transport anisotropy related to steps orientation, with the resistance of EG in the direction orthogonal to the steps ~2× higher than in the parallel direction. Two dimensional morphology and current maps in EG over the stepped SiC surface were obtained by CAFM and revealed a local resistance increase of EG over the (1 l-2n) facets with respect to the (0001) basal planes. This effect allows to account for the observed macroscopic current transport anisotropy and can be explained in terms of a different interface nature between EG and SiC on the two faces, leading to a locally different substrate induced doping of EG

Origin of the current transport anisotropy in epitaxial graphene grown on vicinal 4H-SiC (0001) surfaces

F Giannazzo;G Nicotra;C Spinella;
2015

Abstract

In this paper, the electronic transport in epitaxial graphene (EG) grown on the Si face of 8° off-axis 4H-SiC has been investigated, using both electrical characterization of macroscopic devices and conductive atomic force microscopy (CAFM). In particular, current measurements on linear transmission line model (TLM) structures with different orientations showed a current transport anisotropy related to steps orientation, with the resistance of EG in the direction orthogonal to the steps ~2× higher than in the parallel direction. Two dimensional morphology and current maps in EG over the stepped SiC surface were obtained by CAFM and revealed a local resistance increase of EG over the (1 l-2n) facets with respect to the (0001) basal planes. This effect allows to account for the observed macroscopic current transport anisotropy and can be explained in terms of a different interface nature between EG and SiC on the two faces, leading to a locally different substrate induced doping of EG
2015
Istituto per la Microelettronica e Microsistemi - IMM
Conductive atomic force microscopy
Electronic transport
Graphene
SiC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/283617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact