According to both industrial practice and literature, multi-robot cell design and robot motion planning for vehicle spot welding are two sequential activities, managed by different functional units through different software tools. Due to this sequential computation, the whole process suffers from inherent inefficiency. In this work, a new methodology is proposed, that overcomes the above inefficiency through the simultaneous resolution of design and motion planning problems. Specifically, three mathematical models were introduced that (i) select and positions the resources, (ii) allocate the tasks to the resources and (iii) identify a coordinated robot motion plan. Based on the proposed methodology, we built three ad-hoc cases with the goal to highlight the relations between design, motion planning and environment complexity. These cases could be taken as reference cases so on. Moreover, results on an industrial case are presented.

Validation of an Extended Approach to Multi-robot Cell Design and Motion Planning

Pellegrinelli Stefania;Pedrocchi Nicola;Molinari Tosatti Lorenzo;Tolio Tullio
2015

Abstract

According to both industrial practice and literature, multi-robot cell design and robot motion planning for vehicle spot welding are two sequential activities, managed by different functional units through different software tools. Due to this sequential computation, the whole process suffers from inherent inefficiency. In this work, a new methodology is proposed, that overcomes the above inefficiency through the simultaneous resolution of design and motion planning problems. Specifically, three mathematical models were introduced that (i) select and positions the resources, (ii) allocate the tasks to the resources and (iii) identify a coordinated robot motion plan. Based on the proposed methodology, we built three ad-hoc cases with the goal to highlight the relations between design, motion planning and environment complexity. These cases could be taken as reference cases so on. Moreover, results on an industrial case are presented.
2015
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Multi-robot cells; Design optimization; Motion planning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/303512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact