In this work we studied the effect of salinity (ranging from 50 to 500mM NaCl) on the physiological and the antioxidant responses of the local halophyte Limonium delicatulum Kuntze. We based our analysis on 12 biochemical assays that are commonly used to measure the antioxidant responses under stress such as oxidative stress markers, enzymes activities and polyphenolic compounds. Our aim was to study parameters that are strongly correlated with the growth response to salinity. Results showed two different growth responses depending on the concentration of NaCl in the medium. Under 50 to 200 mM, the growth was stimulated before it decreased significantly at 300-500 mM. L. delicatulum revealed a good aptitude to maintain photosynthetic machinery by increasing the concentrations of photosynthetic pigments, which is essential for the stabilisation of photosystems and the photosynthesis process under optimal NaCl concentration. Their breakdown at higher salinity decreased the photosynthetic performance of plants resulting in growth inhibition. Moreover, to reduce the damaging effect of oxidative stress and to tolerate the accumulation of salt ions, L. delicatulum induced the activities of their antioxidant enzymes more than their contents in polyphenolic compounds.

Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds

Gabriele Morena;Longo Vincenzo;Pucci Laura;
2016

Abstract

In this work we studied the effect of salinity (ranging from 50 to 500mM NaCl) on the physiological and the antioxidant responses of the local halophyte Limonium delicatulum Kuntze. We based our analysis on 12 biochemical assays that are commonly used to measure the antioxidant responses under stress such as oxidative stress markers, enzymes activities and polyphenolic compounds. Our aim was to study parameters that are strongly correlated with the growth response to salinity. Results showed two different growth responses depending on the concentration of NaCl in the medium. Under 50 to 200 mM, the growth was stimulated before it decreased significantly at 300-500 mM. L. delicatulum revealed a good aptitude to maintain photosynthetic machinery by increasing the concentrations of photosynthetic pigments, which is essential for the stabilisation of photosystems and the photosynthesis process under optimal NaCl concentration. Their breakdown at higher salinity decreased the photosynthetic performance of plants resulting in growth inhibition. Moreover, to reduce the damaging effect of oxidative stress and to tolerate the accumulation of salt ions, L. delicatulum induced the activities of their antioxidant enzymes more than their contents in polyphenolic compounds.
2016
BIOLOGIA E BIOTECNOLOGIA AGRARIA
antioxidant enzymes
halophyte
Limonium delicatulum
polyphenols
salinity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/318727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 34
social impact