The Arctic is recognized to be strongly affected by global warming, experiencing a reduction of about 40% in sea-ice thickness during late summer to early autumn in recent decades. The Arctic Ocean has a great influence on the earth's climate, however it is still a significant gap in the Global Observing System. For this reason a large amounts of data are required to monitor the variation of physical and biological parameters and to feed forecasting models, in order to better understand the effects of environmental changes on arctic marine ecosystems. The development of flexible, adaptable and low-cost instrumentation plays a key role in marine environmental studies. This is particularly true if we consider an extreme environment like the Arctic Ocean, where oceanographic instrumentation has to solve a series of technical challenges and barriers. Within this scenario a miniaturized and flexible probe was developed to be easily integrated in different type of platforms. This probe is able to acquire temperature, pressure, fluorescence of chlorophyll a, beyond pitch, roll and acceleration. This work shows the preliminary integration of this technology to an experimental remotely operated underwater and semi-submersible vehicle in the Svalbard area, during survey carried out in the framework of the UVASS (Unmanned Vehicles for Autonomous Sensing and Sampling) research project.

Application of a low cost instrumentation in Arctic extreme conditions

Bruzzone G;Ferretti R;Odetti A;Azzaro M;
2017

Abstract

The Arctic is recognized to be strongly affected by global warming, experiencing a reduction of about 40% in sea-ice thickness during late summer to early autumn in recent decades. The Arctic Ocean has a great influence on the earth's climate, however it is still a significant gap in the Global Observing System. For this reason a large amounts of data are required to monitor the variation of physical and biological parameters and to feed forecasting models, in order to better understand the effects of environmental changes on arctic marine ecosystems. The development of flexible, adaptable and low-cost instrumentation plays a key role in marine environmental studies. This is particularly true if we consider an extreme environment like the Arctic Ocean, where oceanographic instrumentation has to solve a series of technical challenges and barriers. Within this scenario a miniaturized and flexible probe was developed to be easily integrated in different type of platforms. This probe is able to acquire temperature, pressure, fluorescence of chlorophyll a, beyond pitch, roll and acceleration. This work shows the preliminary integration of this technology to an experimental remotely operated underwater and semi-submersible vehicle in the Svalbard area, during survey carried out in the framework of the UVASS (Unmanned Vehicles for Autonomous Sensing and Sampling) research project.
2017
Istituto per l'Ambiente Marino Costiero - IAMC - Sede Napoli
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
arctic ocean
low-cost technology
fluorescence of chlorophyll a
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/331393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact