In this paper, a sampling-based stochastic model predictive control (SMPC) algorithm is proposed for discrete- time linear systems subject to both parametric uncertainties and additive disturbances. One of the main drivers for the development of the proposed control strategy is the need for reliable and robust guidance and control strategies for automated rendezvous and proximity operations between spacecraft. To this end, the proposed control algorithm is validated on a floating spacecraft experimental testbed, proving that this solution is effectively implementable in real time. Parametric uncertainties due to the mass variations during operations, linearization errors, and disturbances due to external space environment are simulta- neously considered. The approach enables to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided. Moreover, the offline sampling approach in the control design phase shifts all the intensive computations to the offline phase, thus greatly reducing the online computational cost, which usually constitutes the main limitation for the adoption of SMPC schemes, especially for low- cost on-board hardware. Numerical simulations and experiments show that the approach provides probabilistic guarantees on the success of the mission, even in rather uncertain and noisy situations, while improving the spacecraft performance in terms of fuel consumption.

An Offline-Sampling SMPC Framework With Application to Autonomous Space Maneuvers

M Mammarella
Primo
;
E Capello;F Dabbene
;
G Guglieri;
2020

Abstract

In this paper, a sampling-based stochastic model predictive control (SMPC) algorithm is proposed for discrete- time linear systems subject to both parametric uncertainties and additive disturbances. One of the main drivers for the development of the proposed control strategy is the need for reliable and robust guidance and control strategies for automated rendezvous and proximity operations between spacecraft. To this end, the proposed control algorithm is validated on a floating spacecraft experimental testbed, proving that this solution is effectively implementable in real time. Parametric uncertainties due to the mass variations during operations, linearization errors, and disturbances due to external space environment are simulta- neously considered. The approach enables to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided. Moreover, the offline sampling approach in the control design phase shifts all the intensive computations to the offline phase, thus greatly reducing the online computational cost, which usually constitutes the main limitation for the adoption of SMPC schemes, especially for low- cost on-board hardware. Numerical simulations and experiments show that the approach provides probabilistic guarantees on the success of the mission, even in rather uncertain and noisy situations, while improving the spacecraft performance in terms of fuel consumption.
2020
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Autonomous rendezvous between spacecraft, chance constraints, real-time implementability, sampling-based approach, stochastic model predictive control (SMPC)
File in questo prodotto:
File Dimensione Formato  
TCST2020_PostPrint.pdf

accesso aperto

Descrizione: An Offline-Sampling SMPC Framework With Application to Autonomous Space Maneuvers
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 6.61 MB
Formato Adobe PDF
6.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 19
social impact