During the last 35 years, data management principles such as physical and logical independence, declarative querying and cost-based optimization have led to profound pervasiveness of relational databases in any kind of organization. More importantly, these technical advances have enabled the first round of business intelligence applications and laid the foundation for managing and analyzing Big Data today.
How data mining and machine learning evolved from relational data base to data science
Amato G;Candela L;Castelli D;Esuli A;Falchi F;Gennaro C;Giannotti F;Monreale A;Nanni M;Pagano P;Pappalardo L;Pedreschi D;Pratesi F;Rabitti F;Rinzivillo S;Rossetti G;Ruggieri S;Sebastiani F;Tesconi M
2018
Abstract
During the last 35 years, data management principles such as physical and logical independence, declarative querying and cost-based optimization have led to profound pervasiveness of relational databases in any kind of organization. More importantly, these technical advances have enabled the first round of business intelligence applications and laid the foundation for managing and analyzing Big Data today.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_372761-doc_124561.pdf
solo utenti autorizzati
Descrizione: How data mining and machine learning evolved from relational data base to data science
Tipologia:
Versione Editoriale (PDF)
Dimensione
206.17 kB
Formato
Adobe PDF
|
206.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_372761-doc_136136.pdf
accesso aperto
Descrizione: How data mining and machine learning evolved from relational data base to data science
Tipologia:
Versione Editoriale (PDF)
Dimensione
240.65 kB
Formato
Adobe PDF
|
240.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.