Human robot collaboration requires new planning strategies to guarantee an efficient and safe coexistence of robots and humans in the workspace. We propose a framework based on a model predictive control approach to trajectory scaling and inverse kinematics. The online modification of the velocity override slows down the task to ensure safety and the redundancy of the system is exploited to maximize the distance from the operator. Experimental results on a 7-degree-of-freedom robotic system prove the effectiveness of the method.
An MPC Framework for Online Motion Planning in Human-Robot Collaborative Tasks
Faroni Marco
Primo
Membro del Collaboration Group
;Beschi ManuelCo-ultimo
Membro del Collaboration Group
;Pedrocchi NicolaCo-ultimo
Membro del Collaboration Group
2019
Abstract
Human robot collaboration requires new planning strategies to guarantee an efficient and safe coexistence of robots and humans in the workspace. We propose a framework based on a model predictive control approach to trajectory scaling and inverse kinematics. The online modification of the velocity override slows down the task to ensure safety and the redundancy of the system is exploited to maximize the distance from the operator. Experimental results on a 7-degree-of-freedom robotic system prove the effectiveness of the method.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_417851-doc_154852.pdf
solo utenti autorizzati
Descrizione: An MPC Framework for Online Motion Planning in Human-Robot Collaborative Tasks
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
333.26 kB
Formato
Adobe PDF
|
333.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


