Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance.
SiCILIA-Silicon Carbide Detectors for Intense Luminosity Investigations and Applications
La Via Francesco;Labate Luca;Muoio Annamaria;Privitera Stefania;Rebai Marica;Zimbone Massimo
2018
Abstract
Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance.File | Dimensione | Formato | |
---|---|---|---|
prod_429474-doc_159620.pdf
accesso aperto
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.92 MB
Formato
Adobe PDF
|
5.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.