Redundant manipulators are usually required to perform tasks in the operational space, but collision-free path planning is computed in the configuration space. Limiting the deviation with respect to the collision-free configuration-space trajectory may allow the robot to avoid collisions without modifying the primary task. This paper proposes a method to guarantee that the solution of the inverse kinematic problem deviates from the nominal joint-space trajectory less than a desired threshold. The excursion limitation is ensured by means of linear constraints and the automatic regulation of the weights of secondary tasks. Numerical and experimental results prove the validness of the proposed approach.
Inverse kinematics of redundant manipulators with dynamic bounds on joint movements
Marco FaroniPrimo
Membro del Collaboration Group
;Manuel BeschiSecondo
Membro del Collaboration Group
;Nicola PedrocchiUltimo
Membro del Collaboration Group
2020
Abstract
Redundant manipulators are usually required to perform tasks in the operational space, but collision-free path planning is computed in the configuration space. Limiting the deviation with respect to the collision-free configuration-space trajectory may allow the robot to avoid collisions without modifying the primary task. This paper proposes a method to guarantee that the solution of the inverse kinematic problem deviates from the nominal joint-space trajectory less than a desired threshold. The excursion limitation is ensured by means of linear constraints and the automatic regulation of the weights of secondary tasks. Numerical and experimental results prove the validness of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
prod_427065-doc_153298.pdf
solo utenti autorizzati
Descrizione: Inverse kinematics of redundant manipulators with dynamic bounds on joint movements
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_427065-doc_152197.pdf
Open Access dal 03/08/2022
Descrizione: ACCEPTED
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.17 MB
Formato
Adobe PDF
|
3.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.