Emerging wide bandgap semiconductor devices such as the ones built with SiC have the potential to revolutionize the power electronics industry through faster switching speeds, lower losses, and higher blocking voltages, which are superior to standard silicon-based devices. The current epitaxial technology enables more controllable and less defective large area substrate growth for the hexagonal polymorph of SiC (4H-SiC) with respect to the cubic counterpart (3C-SiC). However, the cubic polymorph exhibits superior physical properties in comparison to its hexagonal counterpart, such as a narrower bandgap (2.3 eV), possibility to be grown on a silicon substrate, a reduced density of states at the SiC/SiO2 interface, and a higher channel mobility, characteristics that are ideal for its incorporation in metal oxide semiconductor field effect transistors. The most critical issue that hinders the use of 3C-SiC for electronic devices is the high number of defects in bulk and epilayers, respectively. Their origin and evolution are not understood in the literature to date. In this manuscript, we combine ab initio calibrated Kinetic Monte Carlo calculations with transmission electron microscopy characterization to evaluate the evolution of extended defects in 3C-SiC. Our study pinpoints the atomistic mechanisms responsible for extended defect generation and evolution, and establishes that the antiphase boundary is the critical source of other extended defects such as single stacking faults with different symmetries and sequences. This paper showcases that the eventual reduction of these antiphase boundaries is particularly important to achieve good quality crystals, which can then be incorporated in electronic devices.

Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC

Giuseppe Fisicaro;Corrado Bongiorno;Ioannis Deretzis;Filippo Giannazzo;Francesco La Via;Fabrizio Roccaforte;Massimo Zimbone;Antonino La Magna
2020

Abstract

Emerging wide bandgap semiconductor devices such as the ones built with SiC have the potential to revolutionize the power electronics industry through faster switching speeds, lower losses, and higher blocking voltages, which are superior to standard silicon-based devices. The current epitaxial technology enables more controllable and less defective large area substrate growth for the hexagonal polymorph of SiC (4H-SiC) with respect to the cubic counterpart (3C-SiC). However, the cubic polymorph exhibits superior physical properties in comparison to its hexagonal counterpart, such as a narrower bandgap (2.3 eV), possibility to be grown on a silicon substrate, a reduced density of states at the SiC/SiO2 interface, and a higher channel mobility, characteristics that are ideal for its incorporation in metal oxide semiconductor field effect transistors. The most critical issue that hinders the use of 3C-SiC for electronic devices is the high number of defects in bulk and epilayers, respectively. Their origin and evolution are not understood in the literature to date. In this manuscript, we combine ab initio calibrated Kinetic Monte Carlo calculations with transmission electron microscopy characterization to evaluate the evolution of extended defects in 3C-SiC. Our study pinpoints the atomistic mechanisms responsible for extended defect generation and evolution, and establishes that the antiphase boundary is the critical source of other extended defects such as single stacking faults with different symmetries and sequences. This paper showcases that the eventual reduction of these antiphase boundaries is particularly important to achieve good quality crystals, which can then be incorporated in electronic devices.
2020
Istituto per la Microelettronica e Microsistemi - IMM
3C-SiC
extended defects
C-AFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact