Polybrominated diphenyl ethers (PBDEs) are widespread as flame-retardants in different types of consumer products. PBDEs present in the air or dust and their inhalation can damage human health by influencing the respiratory system. We evaluated the effects of environment relevant concentrations (0.01-1 ?M) of PBDE-47, PBDE-99 and PBDE-209 on the mechanism of oxidative stress, dysregulation of cell proliferation, apoptosis, and DNA damage and repair (in term of H2AX phosphorylation ser139) in an in-vitro/ex-vivo model of bronchial epithelial cells. PBDEs (-47, -99 and -209) at the environment relevant concentrations (0.01 and 1 ?M) induce oxidative stress (in term of NOX-4 expression as well as ROS and JC-1 production), activate the mechanism of DNA-damage and repair affecting Olive Tail length (comet assay) production and H2AX phosphorylation (ser139) in normal human bronchial epithelial cells. Furthermore PBDEs, although do not affect cell viability, induce cell apoptosis and single cell capacity to grow into a colony (like a cancer phenotype) in bronchial epithelial cells. Finally, PBDE-47 had a greater effect than -99 and -209. PBDE-47, -99 and -209 congeners exert cytotoxic and genotoxic effects, and play a critical role in the dysregulation of oxidative stress, damaging DNA and the related gene expression in bronchial epithelial cells. Our findings might suggest that PBDEs inhalation might have adverse effect on human health regarding pulmonary diseases in the areas of environmental pollution.

Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells

Angela Marina Montalbano;Giusy Daniela Albano;Giulia Anzalone;Caterina Di Sano;Anna Bonanno;Silvia Ruggieri;Fabio Cibella;Mirella Profita
2020

Abstract

Polybrominated diphenyl ethers (PBDEs) are widespread as flame-retardants in different types of consumer products. PBDEs present in the air or dust and their inhalation can damage human health by influencing the respiratory system. We evaluated the effects of environment relevant concentrations (0.01-1 ?M) of PBDE-47, PBDE-99 and PBDE-209 on the mechanism of oxidative stress, dysregulation of cell proliferation, apoptosis, and DNA damage and repair (in term of H2AX phosphorylation ser139) in an in-vitro/ex-vivo model of bronchial epithelial cells. PBDEs (-47, -99 and -209) at the environment relevant concentrations (0.01 and 1 ?M) induce oxidative stress (in term of NOX-4 expression as well as ROS and JC-1 production), activate the mechanism of DNA-damage and repair affecting Olive Tail length (comet assay) production and H2AX phosphorylation (ser139) in normal human bronchial epithelial cells. Furthermore PBDEs, although do not affect cell viability, induce cell apoptosis and single cell capacity to grow into a colony (like a cancer phenotype) in bronchial epithelial cells. Finally, PBDE-47 had a greater effect than -99 and -209. PBDE-47, -99 and -209 congeners exert cytotoxic and genotoxic effects, and play a critical role in the dysregulation of oxidative stress, damaging DNA and the related gene expression in bronchial epithelial cells. Our findings might suggest that PBDEs inhalation might have adverse effect on human health regarding pulmonary diseases in the areas of environmental pollution.
2020
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
Polybrominated diphenyl ethers
oxidative stress
DNA damage/ DNA repair
Apoptosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/409214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? ND
social impact