Objective: Cardio-metabolic risk assessment in the general population is of paramount importance to reduce diseases burdened by high morbility and mortality. The present paper defines a strategy for out-of-hospital cardio-metabolic risk assessment, based on data acquired from contact-less sensors. Methods: We employ Structural Equation Modeling to identify latent clinical variables of cardio-metabolic risk, related to anthropometric, glycolipidic and vascular function factors. Then, we define a set of sensor-based measurements that correlate with the clinical latent variables. Results: Our measurements identify subjects with one or more risk factors in a population of 68 healthy volunteers from the EU-funded SEMEOTICONS project with accuracy 82.4%, sensitivity 82.5%, and specificity 82.1%. Conclusions: Our preliminary results strengthen the role of self-monitoring systems for cardio-metabolic risk prevention.

Cardio-metabolic risk modeling and assessment through sensor-based measurements

Daniela Giorgi;Luca Bastiani;Maria Aurora Morales;Maria Antonietta Pascali;SaraColantonio;Giuseppe Coppini
2022

Abstract

Objective: Cardio-metabolic risk assessment in the general population is of paramount importance to reduce diseases burdened by high morbility and mortality. The present paper defines a strategy for out-of-hospital cardio-metabolic risk assessment, based on data acquired from contact-less sensors. Methods: We employ Structural Equation Modeling to identify latent clinical variables of cardio-metabolic risk, related to anthropometric, glycolipidic and vascular function factors. Then, we define a set of sensor-based measurements that correlate with the clinical latent variables. Results: Our measurements identify subjects with one or more risk factors in a population of 68 healthy volunteers from the EU-funded SEMEOTICONS project with accuracy 82.4%, sensitivity 82.5%, and specificity 82.1%. Conclusions: Our preliminary results strengthen the role of self-monitoring systems for cardio-metabolic risk prevention.
2022
Cardio-metabolic risk
Risk modeling
Self-monitoring
Smart mirror
Sensor-based measurements
Structural Equation Modeling
Self Organizing Maps
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/416943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact