To properly locate and operate autonomous vehicles for in-field tasks, the knowledge of their instantaneous position needs to be combined with an accurate spatial description of their environment. In agricultural fields, when operating inside the crops, GPS data are not reliable nor always available, therefore high-precision maps are difficult to be obtained and exploited for in-field operations. Recently, low-complexity, georeferenced 3D maps have been proposed to reduce their computationally demand without losing relevant crop shape information. In this paper, we propose an innovative approach based on the ellipsoid method that allows us to \textit{fuse} the data collected by ultrasonic sensors and the information provided by the simplified map to improve the location estimation of an unmanned ground vehicle within crops. Then, this improved estimation of the vehicle location can be integrated with orientation data, merging it with those provided by other sensors as GPS and IMU, using classical filtering schemes.

Improving agricultural drone localization using georeferenced low-complexity maps

Donati Cesare;Mammarella Martina;Comba Lorenzo;Dabbene Fabrizio;
2021

Abstract

To properly locate and operate autonomous vehicles for in-field tasks, the knowledge of their instantaneous position needs to be combined with an accurate spatial description of their environment. In agricultural fields, when operating inside the crops, GPS data are not reliable nor always available, therefore high-precision maps are difficult to be obtained and exploited for in-field operations. Recently, low-complexity, georeferenced 3D maps have been proposed to reduce their computationally demand without losing relevant crop shape information. In this paper, we propose an innovative approach based on the ellipsoid method that allows us to \textit{fuse} the data collected by ultrasonic sensors and the information provided by the simplified map to improve the location estimation of an unmanned ground vehicle within crops. Then, this improved estimation of the vehicle location can be integrated with orientation data, merging it with those provided by other sensors as GPS and IMU, using classical filtering schemes.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Precision farming
position determination
sensor fusion
deterministic filter
ellipsoid method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/441370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact