The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an intuitive and modular task structure. The framework provides an algorithm able to optimize the execution parameter of the tasks. A physical simulation environment allows accurate parameter optimization in a virtual environment providing feasible and safe results. Efficiency tests demonstrated the method's effectiveness, and a comparison with genetic and Bayesian -based ones have been conducted.

Optimizing parameters of robotic task-oriented programming via a multiphysics simulation

Delledonne Michele;Villagrossi Enrico;Beschi Manuel
2023

Abstract

The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an intuitive and modular task structure. The framework provides an algorithm able to optimize the execution parameter of the tasks. A physical simulation environment allows accurate parameter optimization in a virtual environment providing feasible and safe results. Efficiency tests demonstrated the method's effectiveness, and a comparison with genetic and Bayesian -based ones have been conducted.
2023
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
9798350339918
Intuitive robot programming
Robotic tasks optimization
Task-oriented programming
File in questo prodotto:
File Dimensione Formato  
prod_490533-doc_204404.pdf

embargo fino al 15/09/2025

Descrizione: Optimizing parameters of robotic task-oriented programming via a multiphysics simulation
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact