The fermentation process has been widely used to improve plant-based foods' nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-?)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNF?-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.

Sourdough Fermentation Improves the Antioxidant, Antihypertensive, and Anti-Inflammatory Properties of Triticum dicoccum

Gabriele M;Longo V;Pucci L
2023

Abstract

The fermentation process has been widely used to improve plant-based foods' nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-?)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNF?-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.
2023
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Triticum dicoccum
sourdough fermentation
bioactive compounds
antioxidant activity
HPLC-DAD
CAA-RBC
hemolysis test
ACE-inhibitory activity
HT-29
Inflammation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/462220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact