The global prevalence of obesity more than doubled between 1990 and 2022. By 2022, 2.5 billion adults aged 18 and older were overweight, with over 890 million of them living with obesity. The urgent need for understanding the impact of high-fat diet, together with the demanding of analytical methods with low energy/chemicals consumption, can be fulfilled by rapid, high-throughput spectroscopic techniques. To understand the impact of high-fat diet on the metabolic signatures of mouse cecal contents, we characterized metabolite variations in two diet-groups (standard vs high-fat diet) using FTIR spectroscopy and multivariate analysis. Their cecal content showed distinct spectral features corresponding to high- and low-molecular-weight metabolites. Further quantification of 13 low-molecular-weight metabolites using liquid chromatography showed significant reduction in the production of short chain fatty acids and amino acids associated with high-fat diet samples. These findings demonstrated the potential of spectroscopy to follow changes in gut metabolites.
Probing the alterations in mice cecal content due to high-fat diet
Trouki, Cheherazade;Campanella, Beatrice;Onor, Massimo;Vornoli, Andrea;Pozzo, Luisa;Longo, Vincenzo;Bramanti, Emilia
2024
Abstract
The global prevalence of obesity more than doubled between 1990 and 2022. By 2022, 2.5 billion adults aged 18 and older were overweight, with over 890 million of them living with obesity. The urgent need for understanding the impact of high-fat diet, together with the demanding of analytical methods with low energy/chemicals consumption, can be fulfilled by rapid, high-throughput spectroscopic techniques. To understand the impact of high-fat diet on the metabolic signatures of mouse cecal contents, we characterized metabolite variations in two diet-groups (standard vs high-fat diet) using FTIR spectroscopy and multivariate analysis. Their cecal content showed distinct spectral features corresponding to high- and low-molecular-weight metabolites. Further quantification of 13 low-molecular-weight metabolites using liquid chromatography showed significant reduction in the production of short chain fatty acids and amino acids associated with high-fat diet samples. These findings demonstrated the potential of spectroscopy to follow changes in gut metabolites.File | Dimensione | Formato | |
---|---|---|---|
Food Chemistry 455 (2024) 139856.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.6 MB
Formato
Adobe PDF
|
4.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.