The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format and is available through the CLARIN infrastructure.

ReadLet: a Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers

Ferro M.
Primo
;
Marzi C.
Secondo
;
Nadalini A.;Taxitari L.;Lento A.;Pirrelli V.
Ultimo
2024

Abstract

The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format and is available through the CLARIN infrastructure.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Ferro M. en
dc.authority.people Marzi C. en
dc.authority.people Nadalini A. en
dc.authority.people Taxitari L. en
dc.authority.people Lento A. en
dc.authority.people Pirrelli V. en
dc.authority.project ReadLet en
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/11/28 15:16:50 -
dc.date.available 2024/11/28 15:16:50 -
dc.date.firstsubmission 2024/09/25 16:15:57 *
dc.date.issued 2024 -
dc.date.submission 2025/02/28 16:39:58 *
dc.description.abstracteng The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format and is available through the CLARIN infrastructure. -
dc.description.allpeople Ferro, M.; Marzi, C.; Nadalini, A.; Taxitari, L.; Lento, A.; Pirrelli, V. -
dc.description.allpeopleoriginal Ferro M.; Marzi C.; Nadalini A.; Taxitari L.; Lento A.; Pirrelli V. en
dc.description.fulltext open en
dc.description.international si en
dc.description.note ISSN 2951-2093 (COLING) ISSN 2522-2686 (LREC) en
dc.description.numberofauthors 6 -
dc.identifier.isbn 978-2-493814-10-4 en
dc.identifier.scopus 2-s2.0-85195889903 en
dc.identifier.source scopus *
dc.identifier.uri https://hdl.handle.net/20.500.14243/501843 -
dc.identifier.url https://aclanthology.org/volumes/2024.lrec-main/ en
dc.language.iso eng en
dc.publisher.country FRA en
dc.publisher.name ELRA Language Resources Association (ELRA) en
dc.publisher.place Parigi en
dc.relation.allauthors Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue en
dc.relation.conferencedate 20-25 maggio 2024 en
dc.relation.conferencename 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) en
dc.relation.conferenceplace Torino, Italia en
dc.relation.firstpage 13595 en
dc.relation.ispartofbook Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) en
dc.relation.lastpage 13609 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 15 en
dc.relation.projectAcronym READLET en
dc.relation.projectAwardNumber PRIN 2017W8HFRX en
dc.relation.projectAwardTitle ReadLet: Reading to understand. An ICT-driven, large-scale investigation of early grade children's reading strategies. en
dc.relation.projectFunderName MUR en
dc.relation.projectFundingStream PRIN en
dc.subject.keywordseng text reading, eye movements, finger movements, eye-finger span, synchronisation, parallel processing, multimodality -
dc.subject.singlekeyword text reading *
dc.subject.singlekeyword eye movements *
dc.subject.singlekeyword finger movements *
dc.subject.singlekeyword eye-finger span *
dc.subject.singlekeyword synchronisation *
dc.subject.singlekeyword parallel processing *
dc.subject.singlekeyword multimodality *
dc.title ReadLet: a Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers en
dc.type.circulation Internazionale en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.impactfactor si en
dc.type.invited contributo en
dc.type.miur 273 -
dc.type.referee Esperti anonimi en
iris.mediafilter.data 2025/04/06 03:11:07 *
iris.orcid.lastModifiedDate 2025/02/28 17:34:22 *
iris.orcid.lastModifiedMillisecond 1740760462962 *
iris.scopus.extIssued 2024 -
iris.scopus.extTitle ReadLet: a Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers -
iris.scopus.ideLinkStatusDate 2024/09/27 18:29:06 *
iris.scopus.ideLinkStatusMillisecond 1727454546175 *
iris.sitodocente.maxattempts 1 -
scopus.category 2614 *
scopus.category 1706 *
scopus.category 1703 *
scopus.contributor.affiliation Institute for Computational Linguistics -
scopus.contributor.affiliation Institute for Computational Linguistics -
scopus.contributor.affiliation Institute for Computational Linguistics -
scopus.contributor.affiliation Neapolis University -
scopus.contributor.affiliation Biomedical Campus University -
scopus.contributor.affiliation Institute for Computational Linguistics -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60113886 -
scopus.contributor.afid 126510045 -
scopus.contributor.afid 60021199 -
scopus.contributor.auid 15759406100 -
scopus.contributor.auid 36621334800 -
scopus.contributor.auid 57192941272 -
scopus.contributor.auid 56681115400 -
scopus.contributor.auid 58941792900 -
scopus.contributor.auid 14833305800 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Cyprus -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid 104078586 -
scopus.contributor.dptid 104078586 -
scopus.contributor.dptid 104078586 -
scopus.contributor.dptid 121804170 -
scopus.contributor.dptid -
scopus.contributor.dptid 104078586 -
scopus.contributor.name Marcello -
scopus.contributor.name Claudia -
scopus.contributor.name Andrea -
scopus.contributor.name Loukia -
scopus.contributor.name Alessandro -
scopus.contributor.name Vito -
scopus.contributor.subaffiliation Italian National Research Council; -
scopus.contributor.subaffiliation Italian National Research Council; -
scopus.contributor.subaffiliation Italian National Research Council; -
scopus.contributor.subaffiliation Department of Psychology; -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation Italian National Research Council; -
scopus.contributor.surname Ferro -
scopus.contributor.surname Marzi -
scopus.contributor.surname Nadalini -
scopus.contributor.surname Taxitari -
scopus.contributor.surname Lento -
scopus.contributor.surname Pirrelli -
scopus.date.issued 2024 *
scopus.description.abstracteng The paper presents a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We illustrate design issues and experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults' reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format and is available through the CLARIN infrastructure. *
scopus.description.allpeopleoriginal Ferro M.; Marzi C.; Nadalini A.; Taxitari L.; Lento A.; Pirrelli V. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.publisher.name *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.identifier.isbn *
scopus.differences scopus.description.abstracteng *
scopus.differences scopus.relation.conferenceplace *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.isbn 9782493814104 *
scopus.identifier.pui 644494945 *
scopus.identifier.scopus 2-s2.0-85195889903 *
scopus.journal.sourceid 21101227955 *
scopus.language.iso eng *
scopus.publisher.name European Language Resources Association (ELRA) *
scopus.relation.conferencedate 2024 *
scopus.relation.conferencename Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 *
scopus.relation.conferenceplace ita *
scopus.relation.firstpage 13595 *
scopus.relation.lastpage 13609 *
scopus.subject.keywords eye movements; eye-finger span; finger movements; multimodality; parallel processing; synchronisation; text reading; *
scopus.title ReadLet: a Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers *
scopus.titleeng ReadLet: a Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
2024.lrec-main_1188.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.45 MB
Formato Adobe PDF
7.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/501843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact