Orthorhombic gallium oxide (κ-Ga2O3) is an ultra-wide bandgap semiconductor with great potential in new generation electronics. Its application is hindered at present by the limited physical understanding of the relationship between synthesis and functional properties. This work discusses the effects of growth method (metal-organic vapour phase epitaxy and molecular beam epitaxy) as well as annealing treatments in different atmospheres (O2, H2) on point defects in κ-Ga2O3 layers epitaxially grown on c-plane sapphire. Comprehensive experimental characterization by X-ray diffraction, photo current-as well as photoluminescence excitation spectroscopy, and X-ray photo electron spectroscopy is combined with first principles calculations of the point defects’ formation and complex-dissociation energies. We demonstrate that for κ-Ga2O3 the concentration of shallow and deep level defects can be sensitively controlled through annealing treatments at temperatures (T = 500 °C) well below the thermal stability threshold of this polymorph. In particular, our results suggest that hydrogen-related defects (e.g., H-interstitials, Ga-vacancies—H complexes) play a key role in this process. While we provide direct exemplary implications of our results for the performances of κ-Ga2O3 based photodetectors, these findings are predicted to impact further application fields of κ-Ga2O3, such as high electron mobility transistors or memory devices.

Engineering shallow and deep level defects in κ-Ga2O3 thin films: comparing metal-organic vapour phase epitaxy to molecular beam epitaxy and the effect of annealing treatments

Bosi M.;Seravalli L.;Mezzadri F.;Fornari R.
2024

Abstract

Orthorhombic gallium oxide (κ-Ga2O3) is an ultra-wide bandgap semiconductor with great potential in new generation electronics. Its application is hindered at present by the limited physical understanding of the relationship between synthesis and functional properties. This work discusses the effects of growth method (metal-organic vapour phase epitaxy and molecular beam epitaxy) as well as annealing treatments in different atmospheres (O2, H2) on point defects in κ-Ga2O3 layers epitaxially grown on c-plane sapphire. Comprehensive experimental characterization by X-ray diffraction, photo current-as well as photoluminescence excitation spectroscopy, and X-ray photo electron spectroscopy is combined with first principles calculations of the point defects’ formation and complex-dissociation energies. We demonstrate that for κ-Ga2O3 the concentration of shallow and deep level defects can be sensitively controlled through annealing treatments at temperatures (T = 500 °C) well below the thermal stability threshold of this polymorph. In particular, our results suggest that hydrogen-related defects (e.g., H-interstitials, Ga-vacancies—H complexes) play a key role in this process. While we provide direct exemplary implications of our results for the performances of κ-Ga2O3 based photodetectors, these findings are predicted to impact further application fields of κ-Ga2O3, such as high electron mobility transistors or memory devices.
2024
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
gallium oxide
File in questo prodotto:
File Dimensione Formato  
Engineering shallow and deep level defects in κ-Ga2O3 thin films: comparing metal-organic vapour phase epitaxy to molecular beam epitaxy and the effect of annealing treatments.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.59 MB
Formato Adobe PDF
7.59 MB Adobe PDF Visualizza/Apri
Engineering shallow and deep level defects in κ-Ga2O3 thin films: comparing metal-organic vapour phase epitaxy to molecular beam epitaxy and the effect of annealing treatments.pdf

accesso aperto

Descrizione: SUPPLEMENTARY INFORMATION
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact