In this work, threshold voltage instability of normally off p-GaN high electron mobility transistors has been investigated by monitoring the gate current density during a device on-state. The origin of gate current variations under stress has been ascribed to charge trapping occurring at different interfaces in the metal/p-GaN/AlGaN/GaN system. In particular, depending on the stress bias level, electrons (VG < 6 V) or holes (VG > 6 V) are trapped, causing a positive or negative threshold voltage shift ΔVTH, respectively. By monitoring the gate current variations at different temperatures, activation energies associated with the electrons and holes trapping could be determined and correlated with the presence of nitrogen (electron traps) or gallium (hole traps) vacancies. Moreover, the electrical measurements suggested the generation of a new electron-trap upon long-time bias stress, associated with the creation of crystallographic dislocation-like defects extending across different interfaces (p-GaN/AlGaN/GaN) of the gate stack.

Threshold voltage instability by charge trapping effects in the gate region of p-GaN HEMTs

Greco G.;Fiorenza P.;Giannazzo F.;Bongiorno C.;Roccaforte F.
2022

Abstract

In this work, threshold voltage instability of normally off p-GaN high electron mobility transistors has been investigated by monitoring the gate current density during a device on-state. The origin of gate current variations under stress has been ascribed to charge trapping occurring at different interfaces in the metal/p-GaN/AlGaN/GaN system. In particular, depending on the stress bias level, electrons (VG < 6 V) or holes (VG > 6 V) are trapped, causing a positive or negative threshold voltage shift ΔVTH, respectively. By monitoring the gate current variations at different temperatures, activation energies associated with the electrons and holes trapping could be determined and correlated with the presence of nitrogen (electron traps) or gallium (hole traps) vacancies. Moreover, the electrical measurements suggested the generation of a new electron-trap upon long-time bias stress, associated with the creation of crystallographic dislocation-like defects extending across different interfaces (p-GaN/AlGaN/GaN) of the gate stack.
2022
Istituto per la Microelettronica e Microsistemi - IMM
p-GaN, Normally-off, HEMTs, Treshold Voltage
File in questo prodotto:
File Dimensione Formato  
Greco_APL_p-GaN_233506_1_online.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact