The gate oxide lifetime in 4H-SiC power MOSFETs is typically assessed at fixed and constant gate bias stress, monitoring the time-dependent dielectric breakdown (TDDB). In this work, the TDDB results obtained at three different insulator fields - either for positive and negative values - have been compared at wafer level. The TDDB was measured at 200°C under the following conditions: (i) 3 (positive or negative) gate bias values; (ii) 3 (positive or negative) gate current values; (iii) 3 different insulator fields varying the gate bias stress voltage in each device after propaedeutic capacitance measurements to determine the gate insulator thickness. The three methods gave three lifetime prediction at low oxide field (under standard device operation). The physical explanation of these findings can be found, taking into account the device design across the source-body-JFET junction and the transient trapping phenomena at the SiO2 interface.

Consideration on the extrapolation of the low insulator field TDDB in 4H-SiC power MOSFETs

Fiorenza, P.;Bongiorno, C.;Giannazzo, F.;Roccaforte, F.
2023

Abstract

The gate oxide lifetime in 4H-SiC power MOSFETs is typically assessed at fixed and constant gate bias stress, monitoring the time-dependent dielectric breakdown (TDDB). In this work, the TDDB results obtained at three different insulator fields - either for positive and negative values - have been compared at wafer level. The TDDB was measured at 200°C under the following conditions: (i) 3 (positive or negative) gate bias values; (ii) 3 (positive or negative) gate current values; (iii) 3 different insulator fields varying the gate bias stress voltage in each device after propaedeutic capacitance measurements to determine the gate insulator thickness. The three methods gave three lifetime prediction at low oxide field (under standard device operation). The physical explanation of these findings can be found, taking into account the device design across the source-body-JFET junction and the transient trapping phenomena at the SiO2 interface.
2023
Istituto per la Microelettronica e Microsistemi - IMM
4H-SiC MOSFETs
accurate insulator field determination
TDDB
File in questo prodotto:
File Dimensione Formato  
2023_IRPS_Consideration_on_the_extrapolation_of_the_low_insulator_field_TDDB_in_4H-SiC_power_MOSFETs.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2023-IRPS-Full-paper-Fiorenza_post-print.pdf

embargo fino al 31/03/2025

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 528.5 kB
Formato Adobe PDF
528.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact