The digital twin (DT) paradigm provides a purpose-built digital representation of a physical system. DTs are often composed by several interconnected models, which need to be specifically tailored to fit the DT purposes. The objective of this work is the development of an urban digital twin (UDT) for the city of Matera, following urban intelligence (UI) paradigm. The latter leverages the multi-disciplinary integration and optimization of the city systems and subsystems to develop purpose-driven DTs and support the decision-making process. The UDT is intended to support governance, stakeholders, and citizens, integrating morphological data for the city representation, reliable simulation tools and data-driven methods for the city state prediction (e.g., traffic, solar irradiation), optimization algorithms for planning and emergency response, sensors for vehicle and pedestrian traffic volumes and environmental monitoring (e.g., pollutant distributions), and a participatory data collection process from the citizens. A Data Lake is used to make available to the UDT modules the data produced by the morphological representation, simulations/data-driven methods, sensors, and the participatory data. The Data Lake provides a standardized approach for the aggregation and extraction of information. Finally, an Urban Sensing Engine supports the decision-making process with artificial intelligence forms of reasoning, to effectively combine the information produced by the UDT components.

Digital twins for intelligent cities: the case study of Matera

Riccardo De Benedictis
;
Amedeo Cesta;Riccardo Pellegrini
;
Matteo Diez;Diego Maria Pinto
;
Paolo Ventura
;
Giuseppe Stecca
;
Giovanni Felici;Andreas Scalas;Michela Mortara
;
Daniela Cabiddu
;
Simone Pittaluga
;
Michela Spagnuolo
;
Stefano Silvestri
;
Emanuele Damiano
;
Mario Sicuranza;Mario Ciampi;Gabriella Tognola
;
Lucanos Strambini
;
Roberto Malvezzi
;
Ida G. Presta
;
Marialucia Camardelli;Giordana Castelli
;
Emilio Fortunato Campana
2025

Abstract

The digital twin (DT) paradigm provides a purpose-built digital representation of a physical system. DTs are often composed by several interconnected models, which need to be specifically tailored to fit the DT purposes. The objective of this work is the development of an urban digital twin (UDT) for the city of Matera, following urban intelligence (UI) paradigm. The latter leverages the multi-disciplinary integration and optimization of the city systems and subsystems to develop purpose-driven DTs and support the decision-making process. The UDT is intended to support governance, stakeholders, and citizens, integrating morphological data for the city representation, reliable simulation tools and data-driven methods for the city state prediction (e.g., traffic, solar irradiation), optimization algorithms for planning and emergency response, sensors for vehicle and pedestrian traffic volumes and environmental monitoring (e.g., pollutant distributions), and a participatory data collection process from the citizens. A Data Lake is used to make available to the UDT modules the data produced by the morphological representation, simulations/data-driven methods, sensors, and the participatory data. The Data Lake provides a standardized approach for the aggregation and extraction of information. Finally, an Urban Sensing Engine supports the decision-making process with artificial intelligence forms of reasoning, to effectively combine the information produced by the UDT components.
2025
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Dipartimento Ingegneria. ICT e Tecnologie per l'energia e i trasporti - DIITET
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Digital twin
Urban intelligence
Optimization
3D semantic modelling
File in questo prodotto:
File Dimensione Formato  
s40860-025-00245-3.pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact