BACKGROUND: Previous evidence has shown that genetic variations in the serotonergic system contribute to individual differences in personality traits germane to impulse control. The monoamine oxidase-A (MAO-A) gene, coding for an enzyme primarily involved in serotonin and noradrenaline catabolism, presents a well-characterized functional polymorphism consisting of a variable number of tandem repeats in the promoter region, with high-activity and low-activity variants. High-activity allele carriers have higher enzyme expression, lower amine concentration, and present higher scores on behavioral measures of impulsivity than low-activity allele carriers. METHODS: We studied the relationship of this polymorphism to brain activity elicited by a response inhibition task (Go/NoGo task), using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging in 24 healthy men. RESULTS: Direct comparison between groups revealed a greater BOLD response in the right ventrolateral prefrontal cortex (Brodmann's area [BA] 45/47) in high-activity allele carriers, whereas a greater response in the right superior parietal cortex (BA 7) and bilateral extrastriate cortex (BA 18) was found in low-activity allele carriers. CONCLUSIONS: These data suggest that a specific genetic variation involving serotonergic catabolism can modulate BOLD response associated with human impulsivity.

Monoamine oxidase-a genetic variations influence brain activity associated with inhibitory control: new insight into the neural correlates of impulsivity

Passamonti L;Fera F;Magariello A;Cerasa A;Muglia M;Nicoletti G;Gallo O;Quattrone A
2006

Abstract

BACKGROUND: Previous evidence has shown that genetic variations in the serotonergic system contribute to individual differences in personality traits germane to impulse control. The monoamine oxidase-A (MAO-A) gene, coding for an enzyme primarily involved in serotonin and noradrenaline catabolism, presents a well-characterized functional polymorphism consisting of a variable number of tandem repeats in the promoter region, with high-activity and low-activity variants. High-activity allele carriers have higher enzyme expression, lower amine concentration, and present higher scores on behavioral measures of impulsivity than low-activity allele carriers. METHODS: We studied the relationship of this polymorphism to brain activity elicited by a response inhibition task (Go/NoGo task), using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging in 24 healthy men. RESULTS: Direct comparison between groups revealed a greater BOLD response in the right ventrolateral prefrontal cortex (Brodmann's area [BA] 45/47) in high-activity allele carriers, whereas a greater response in the right superior parietal cortex (BA 7) and bilateral extrastriate cortex (BA 18) was found in low-activity allele carriers. CONCLUSIONS: These data suggest that a specific genetic variation involving serotonergic catabolism can modulate BOLD response associated with human impulsivity.
2006
Istituto di Scienze Neurologiche - ISN - Sede Mangone
Imaging Genetics
fMRI
Impulsivity
MAO-A
serotonin
File in questo prodotto:
File Dimensione Formato  
prod_49975-doc_30477.pdf

solo utenti autorizzati

Descrizione: Monoamine Oxidase-A Genetic Variations Influence Brain Activity Associated with Inhibitory Control: New Insight into the Neural Correlates of Impulsivity
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 273.93 kB
Formato Adobe PDF
273.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/76637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? ND
social impact