This letter reports on epitaxial nickel oxide (NiO) films grown by metal-organic chemichal vapor deposition on AlGaN/GaN heterostructures. The grown material was epitaxial, free from voids and exhibited a permittivity of 11.7, close to bulk NiO. This approach is advantageous with respect other methods such as the thermal oxidation of Ni films due to a better reproducibility and film quality. A reduction of the leakage current in Schottky diodes with an interfacial NiO layer has been observed and described using the metal-insulator-semiconductor Schottky model. The results indicate that these films are promising as gate dielectric for AlGaN/GaN transistors technology.

Epitaxial NiO gate dielectric on AlGaN/GaN heterostructures

Roccaforte F;Greco G;Fiorenza P;Raineri V;Lo Nigro R
2012

Abstract

This letter reports on epitaxial nickel oxide (NiO) films grown by metal-organic chemichal vapor deposition on AlGaN/GaN heterostructures. The grown material was epitaxial, free from voids and exhibited a permittivity of 11.7, close to bulk NiO. This approach is advantageous with respect other methods such as the thermal oxidation of Ni films due to a better reproducibility and film quality. A reduction of the leakage current in Schottky diodes with an interfacial NiO layer has been observed and described using the metal-insulator-semiconductor Schottky model. The results indicate that these films are promising as gate dielectric for AlGaN/GaN transistors technology.
2012
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/144966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact