Phosphorous implanted n+/p diodes have been included in the masks for manufacturing n-MOSFET devices and processed in the same way of source/drain regions. The diode junctions were made by a P+ implantation at 300°C and a post implantation annealing at 1300°C. The diode emitter area was protected by 0.6 micron thick CVD oxide during the processing of the MOSFET gate oxide. Three gate oxide processes were taken into account: two of them include a N implantation before a wet oxidation, while the third one was a standard oxidation. Considering the effect on the n+/p diodes, the main difference among these were the wet thermal oxidation time that ranged between 180 and 480 min at a temperature of 1100°C. The diode current-voltage characteristics show similar forward but different reverse curves in the temperature range of 25-290°C. Differences in reverse bias voltage as a function of the measurement temperature have been analyzed and are related to the different gate oxidation time. A correlation between the shortest oxidation time and the lower leakage current is presented.

Characterization of Phosphorus Implanted n+/p Junctions Integrated as Source/drain Regions in a 4H-SiC n-MOSFET

Moscatelli F;Nipoti R;Poggi A;Solmi S;Cristiani S;Sanmartin M
2009

Abstract

Phosphorous implanted n+/p diodes have been included in the masks for manufacturing n-MOSFET devices and processed in the same way of source/drain regions. The diode junctions were made by a P+ implantation at 300°C and a post implantation annealing at 1300°C. The diode emitter area was protected by 0.6 micron thick CVD oxide during the processing of the MOSFET gate oxide. Three gate oxide processes were taken into account: two of them include a N implantation before a wet oxidation, while the third one was a standard oxidation. Considering the effect on the n+/p diodes, the main difference among these were the wet thermal oxidation time that ranged between 180 and 480 min at a temperature of 1100°C. The diode current-voltage characteristics show similar forward but different reverse curves in the temperature range of 25-290°C. Differences in reverse bias voltage as a function of the measurement temperature have been analyzed and are related to the different gate oxidation time. A correlation between the shortest oxidation time and the lower leakage current is presented.
2009
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact