In this study, the effects of pure olive phenolic compounds and olive mill wastewater (OMWW) (after membrane filtration treatments) on Aspergillus flavus growth and aflatoxin B1 (AFB1) production, were investigated. Five OMWWs coming from Greek (Lianolia, Koroneiki and Asprolia) and Italian (Cellina di Nardò and Coratina) olive oil cultivars, opportunely filtered using a membrane system, were added at two concentrations (5 and 15%) to growth medium, in order to evaluate their effect on A. flavus growth and AFB1 production. The OMWW fractions treatment, after 6 days of incubation, did not inhibit the fungal growth rate, but at 15% concentration significantly reduced the AFB1 production (ranging from 88 to 100%). A similar approach was used for caffeic acid, hydroxytyrosol, tyrosol and verbascoside, the major pure phenolic compounds identified in OMWW fractions. They were evaluated at increasing doses (10, 50 and 100 ?g/ml) following both AFB1 production and fungal growth. At the highest concentration (100 ?g/ml) all pure compounds showed a reduction of about 99% of AFB1 production without any influence on fungal growth. This is the first time in which OMWWs and their main phenolics were used in the treatments against AFB1 production. The results obtained could provide possible new strategies for preventing AFB1 food contamination using olive polyphenols and OMWW fractions with anti-aflatoxigenic effect, and permitting to harness in a sustainable way an olive oil by-product.

Inhibition of aflatoxin B1 production by verbascoside and other olive polyphenols

SL Bavaro;I D'Antuono;G Cozzi;M Haidukowski;A Cardinali;AF Logrieco
2016

Abstract

In this study, the effects of pure olive phenolic compounds and olive mill wastewater (OMWW) (after membrane filtration treatments) on Aspergillus flavus growth and aflatoxin B1 (AFB1) production, were investigated. Five OMWWs coming from Greek (Lianolia, Koroneiki and Asprolia) and Italian (Cellina di Nardò and Coratina) olive oil cultivars, opportunely filtered using a membrane system, were added at two concentrations (5 and 15%) to growth medium, in order to evaluate their effect on A. flavus growth and AFB1 production. The OMWW fractions treatment, after 6 days of incubation, did not inhibit the fungal growth rate, but at 15% concentration significantly reduced the AFB1 production (ranging from 88 to 100%). A similar approach was used for caffeic acid, hydroxytyrosol, tyrosol and verbascoside, the major pure phenolic compounds identified in OMWW fractions. They were evaluated at increasing doses (10, 50 and 100 ?g/ml) following both AFB1 production and fungal growth. At the highest concentration (100 ?g/ml) all pure compounds showed a reduction of about 99% of AFB1 production without any influence on fungal growth. This is the first time in which OMWWs and their main phenolics were used in the treatments against AFB1 production. The results obtained could provide possible new strategies for preventing AFB1 food contamination using olive polyphenols and OMWW fractions with anti-aflatoxigenic effect, and permitting to harness in a sustainable way an olive oil by-product.
2016
Istituto di Scienze delle Produzioni Alimentari - ISPA
aflatoxin B1 inhibition
Aspergillus flavus
olive mill wastewater
polyphenols
File in questo prodotto:
File Dimensione Formato  
prod_359350-doc_117879.pdf

solo utenti autorizzati

Descrizione: Inhibition of aflatoxin B1 production by verbascoside and other olive polyphenols
Tipologia: Versione Editoriale (PDF)
Dimensione 506.36 kB
Formato Adobe PDF
506.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/323419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact