The paper focuses on industrial interaction roboticstasks, investigating a control approach involving multiples learninglevels for training the manipulator to execute a repetitive(partially) changeable task, accurately controlling the interaction.Based on compliance control, the proposed approach consists intwo main control levels: i) iterative friction learning compensationcontroller with reinforcement and ii) iterative force-trackinglearning controller with reinforcement. The learning algorithmsrelies on the iterative learning and reinforcement learning proceduresto automatize the controllers parameters tuning. Theproposed procedure has been applied to an automotive industrialassembly task. A standard industrial UR 10 Universal Robot hasbeen used, equipped by a compliant pneumatic gripper and aforce/torque sensor at the robot end-effector.

Iterative Learning Procedure with Reinforcement for High-Accuracy Force Tracking in Robotized Tasks

Roveda Loris
Co-primo
Membro del Collaboration Group
;
Pallucca Giacomo
Co-primo
Membro del Collaboration Group
;
Pedrocchi Nicola
Co-ultimo
Membro del Collaboration Group
;
Molinari Tosatti Lorenzo
Co-ultimo
Membro del Collaboration Group
2017

Abstract

The paper focuses on industrial interaction roboticstasks, investigating a control approach involving multiples learninglevels for training the manipulator to execute a repetitive(partially) changeable task, accurately controlling the interaction.Based on compliance control, the proposed approach consists intwo main control levels: i) iterative friction learning compensationcontroller with reinforcement and ii) iterative force-trackinglearning controller with reinforcement. The learning algorithmsrelies on the iterative learning and reinforcement learning proceduresto automatize the controllers parameters tuning. Theproposed procedure has been applied to an automotive industrialassembly task. A standard industrial UR 10 Universal Robot hasbeen used, equipped by a compliant pneumatic gripper and aforce/torque sensor at the robot end-effector.
2017
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Interaction Control
Learning Procedures
Impedance Control
Industry 4.0
Automatic Assembly
File in questo prodotto:
File Dimensione Formato  
prod_375138-doc_168398.pdf

solo utenti autorizzati

Descrizione: Iterative Learning Procedure with Reinforcement for High-Accuracy Force Tracking in Robotized Tasks - Published Version
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 917.46 kB
Formato Adobe PDF
917.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_375138-doc_200537.pdf

Open Access dal 02/09/2019

Descrizione: Iterative Learning Procedure with Reinforcement for High-Accuracy Force Tracking in Robotized Tasks
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/340635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 70
social impact