Graphene is an ideal candidate for next generation applications as a transparent electrode for electronics on plastic due to its flexibility and the conservation of electrical properties upon deformation. More importantly, its field-effect tunable carrier density, high mobility and saturation velocity make it an appealing choice as a channel material for field-effect transistors (FETs) for several potential applications. As an example, properly designed and scaled graphene FETs (Gr-FETs) can be used for flexible high frequency (RF) electronics or for high sensitivity chemical sensors. Miniaturized and flexible Gr-FET sensors would be highly advantageous for current sensors technology for in vivo and in situ applications. In this paper, we report a wafer-scale processing strategy to fabricate arrays of back-gated Gr-FETs on poly(ethylene naphthalate) (PEN) substrates. These devices present a large-area graphene channel fully exposed to the external environment, in order to be suitable for sensing applications, and the channel conductivity is efficiently modulated by a buried gate contact under a thin Al2O3 insulating film. In order to be compatible with the use of the PEN substrate, optimized deposition conditions of the Al2O3 film by plasma-enhanced atomic layer deposition (PE-ALD) at a low temperature (100 degrees C) have been developed without any relevant degradation of the final dielectric performance.

Advances in the fabrication of graphene transistors on flexible substrates

S Di Franco;F Giannazzo
2017

Abstract

Graphene is an ideal candidate for next generation applications as a transparent electrode for electronics on plastic due to its flexibility and the conservation of electrical properties upon deformation. More importantly, its field-effect tunable carrier density, high mobility and saturation velocity make it an appealing choice as a channel material for field-effect transistors (FETs) for several potential applications. As an example, properly designed and scaled graphene FETs (Gr-FETs) can be used for flexible high frequency (RF) electronics or for high sensitivity chemical sensors. Miniaturized and flexible Gr-FET sensors would be highly advantageous for current sensors technology for in vivo and in situ applications. In this paper, we report a wafer-scale processing strategy to fabricate arrays of back-gated Gr-FETs on poly(ethylene naphthalate) (PEN) substrates. These devices present a large-area graphene channel fully exposed to the external environment, in order to be suitable for sensing applications, and the channel conductivity is efficiently modulated by a buried gate contact under a thin Al2O3 insulating film. In order to be compatible with the use of the PEN substrate, optimized deposition conditions of the Al2O3 film by plasma-enhanced atomic layer deposition (PE-ALD) at a low temperature (100 degrees C) have been developed without any relevant degradation of the final dielectric performance.
2017
Istituto per la Microelettronica e Microsistemi - IMM
atomic layer deposition
chemical sensing
field effect transistor
flexible electronics
graphene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact