In this study the phenotypic and genomic characterization of two Arcobacter butzleri (Ab) strains (Ab 34_O and Ab 39_O) isolated from pre-cut ready-to-eat vegetables were performed. Results provided useful data about their taxonomy and their overall virulence potential with particular reference to the antibiotic and heavy metal susceptibility. These features were moreover compared with those of two Ab strains isolated from shellfish and a genotaxonomic assessment of the Ab species was performed. The two Ab isolated from vegetables were confirmed to belong to the Aliarcobacter butzleri species by 16S rRNA gene sequence analysis, MLST and genomic analyses. The genome-based taxonomic assessment of the Ab species brought to the light the possibility to define different subspecies reflecting the source of isolation, even though further genomes from different sources should be available to support this hypothesis. The strains isolated from vegetables in the same geographic area shared the same distribution of COGs with a prevalence of the cluster "inorganic ion transport and metabolism", consistent with the lithotrophic nature of Arcobacter spp. None of the Ab strains (from shellfish and from vegetables) metabolized carbohydrates but utilized organic acids and amino acids as carbon sources. The metabolic fingerprinting of Ab resulted less discriminatory than the genome-based approach. The Ab strains isolated from vegetables and those isolated from shellfish endowed multiple resistance to several antibiotics and heavy metals.

Phenotype and genomic background of Arcobacter butzleri strains and taxogenomic assessment of the species

Fanelli F;Chieffi D;Baruzzi F;Fusco V
2020

Abstract

In this study the phenotypic and genomic characterization of two Arcobacter butzleri (Ab) strains (Ab 34_O and Ab 39_O) isolated from pre-cut ready-to-eat vegetables were performed. Results provided useful data about their taxonomy and their overall virulence potential with particular reference to the antibiotic and heavy metal susceptibility. These features were moreover compared with those of two Ab strains isolated from shellfish and a genotaxonomic assessment of the Ab species was performed. The two Ab isolated from vegetables were confirmed to belong to the Aliarcobacter butzleri species by 16S rRNA gene sequence analysis, MLST and genomic analyses. The genome-based taxonomic assessment of the Ab species brought to the light the possibility to define different subspecies reflecting the source of isolation, even though further genomes from different sources should be available to support this hypothesis. The strains isolated from vegetables in the same geographic area shared the same distribution of COGs with a prevalence of the cluster "inorganic ion transport and metabolism", consistent with the lithotrophic nature of Arcobacter spp. None of the Ab strains (from shellfish and from vegetables) metabolized carbohydrates but utilized organic acids and amino acids as carbon sources. The metabolic fingerprinting of Ab resulted less discriminatory than the genome-based approach. The Ab strains isolated from vegetables and those isolated from shellfish endowed multiple resistance to several antibiotics and heavy metals.
2020
Istituto di Scienze delle Produzioni Alimentari - ISPA
Arcobacter butzleri
Aliarcobacter butzleri
Shellfish
Vegetables
Antibiotic and heavy metal resistance
Lithotrophic bacteria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/368534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact