The demand for the development of fast, easy-to-use and low-cost analytical methods for food adulteration analysis has being increasing in the last years. Although infrared spectroscopic techniques offer these advantages, the validation of screening methods requiring the application of multivariate data treatment is less frequently described in literature thus limiting their use as routine tools in control laboratories for food fraud monitoring. In this paper, an EU-validation procedure for screening methods was successfully applied to a multivariate FT-NIR spectroscopic method for the screening of durum wheat pasta samples adulterated with common wheat at the screening target concentration of 3%. Good results in terms of the cut-off value (2.32% mass fraction of soft wheat) and false suspect rates (0.1% for blanks; 13% at 1% mass fraction) demonstrated that the present validation approach would be a proof-of-strategy to be used for multivariate infrared methods applied for screening purposes.
A simple design for the validation of a FT-NIR screening method: Application to the detection of durum wheat pasta adulteration
De Girolamo A
Primo
;Lippolis V;Cervellieri S;Pascale M;Logrieco AFPenultimo
;
2020
Abstract
The demand for the development of fast, easy-to-use and low-cost analytical methods for food adulteration analysis has being increasing in the last years. Although infrared spectroscopic techniques offer these advantages, the validation of screening methods requiring the application of multivariate data treatment is less frequently described in literature thus limiting their use as routine tools in control laboratories for food fraud monitoring. In this paper, an EU-validation procedure for screening methods was successfully applied to a multivariate FT-NIR spectroscopic method for the screening of durum wheat pasta samples adulterated with common wheat at the screening target concentration of 3%. Good results in terms of the cut-off value (2.32% mass fraction of soft wheat) and false suspect rates (0.1% for blanks; 13% at 1% mass fraction) demonstrated that the present validation approach would be a proof-of-strategy to be used for multivariate infrared methods applied for screening purposes.File | Dimensione | Formato | |
---|---|---|---|
De Girolamo et al 2020.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
516.46 kB
Formato
Adobe PDF
|
516.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.