The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child’s reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills.

Using mobile technology for reading assessment

Taxitari, L.;Cappa, C.;Ferro, M.;Marzi, C.;Nadalini, A.;Pirrelli, V.
2020

Abstract

The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child’s reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Taxitari, L. en
dc.authority.people Cappa, C. en
dc.authority.people Ferro, M. en
dc.authority.people Marzi, C. en
dc.authority.people Nadalini, A. en
dc.authority.people Pirrelli, V. en
dc.authority.project ReadLet en
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di Fisiologia Clinica - IFC *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 885 *
dc.contributor.appartenenza.mi 918 *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/11/29 18:47:13 -
dc.date.available 2024/11/29 18:47:13 -
dc.date.firstsubmission 2024/09/25 16:03:08 *
dc.date.issued 2020 -
dc.date.submission 2025/02/24 14:31:03 *
dc.description.abstracteng The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child’s reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills. -
dc.description.allpeople Taxitari, L.; Cappa, C.; Ferro, M.; Marzi, C.; Nadalini, A.; Pirrelli, V. -
dc.description.allpeopleoriginal Taxitari, L.; Cappa, C.; Ferro, M.; Marzi, C.; Nadalini, A.; Pirrelli, V. en
dc.description.fulltext restricted en
dc.description.numberofauthors 6 -
dc.identifier.doi 10.1109/CiSt49399.2021.9357173 en
dc.identifier.isbn 978-1-7281-6646-9 en
dc.identifier.isi WOS:000657322100052 en
dc.identifier.scopus 2-s2.0-85103834603 en
dc.identifier.source orcid *
dc.identifier.uri https://hdl.handle.net/20.500.14243/501841 -
dc.identifier.url https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9357173 en
dc.language.iso eng en
dc.relation.allauthors Loukia Taxitari, Claudia Cappa, Marcello Ferro, Claudia Marzi, Andrea Nadalini, Vito Pirrelli en
dc.relation.conferencename 6th IEEE Congress on Information Science and Technology (CiSt) en
dc.relation.firstpage 302 en
dc.relation.ispartofbook Proceedings of the 6th IEEE Congress on Information Science and Technology (CiSt) en
dc.relation.lastpage 307 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 6 en
dc.relation.projectAcronym - en
dc.relation.projectAwardNumber - en
dc.relation.projectAwardTitle ReadLet en
dc.relation.projectFunderName MUR en
dc.relation.projectFundingStream PRIN en
dc.relation.volume 2020-June en
dc.subject.keywordseng reading assessment, reading research, mobile technology, NLP, cloud computing, special education needs -
dc.subject.singlekeyword reading assessment *
dc.subject.singlekeyword reading research *
dc.subject.singlekeyword mobile technology *
dc.subject.singlekeyword NLP *
dc.subject.singlekeyword cloud computing *
dc.subject.singlekeyword special education needs *
dc.title Using mobile technology for reading assessment en
dc.type.circulation Internazionale en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.invited contributo en
dc.type.miur 273 -
dc.type.referee Esperti anonimi en
iris.isi.extIssued 2020 -
iris.isi.extTitle Using mobile technology for reading assessment -
iris.isi.ideLinkStatusDate 2025/01/13 19:04:15 *
iris.isi.ideLinkStatusMillisecond 1736791455661 *
iris.mediafilter.data 2025/04/02 00:45:12 *
iris.orcid.lastModifiedDate 2025/02/24 14:32:20 *
iris.orcid.lastModifiedMillisecond 1740403940330 *
iris.scopus.extIssued 2020 -
iris.scopus.extTitle Using mobile technology for reading assessment -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.doi 10.1109/cist49399.2021.9357173 *
iris.unpaywall.isoa false *
iris.unpaywall.metadataCallLastModified 18/06/2025 04:56:04 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1750215364188 -
iris.unpaywall.oastatus closed *
isi.category NU *
isi.category EP *
isi.category ET *
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.name Loukia -
isi.contributor.name Claudia -
isi.contributor.name Marcello -
isi.contributor.name Claudia -
isi.contributor.name Andrea -
isi.contributor.name Vito -
isi.contributor.researcherId KLY-5712-2024 -
isi.contributor.researcherId HVN-3161-2023 -
isi.contributor.researcherId D-6260-2016 -
isi.contributor.researcherId C-8034-2012 -
isi.contributor.researcherId DKG-8281-2022 -
isi.contributor.researcherId DXW-8155-2022 -
isi.contributor.subaffiliation Inst Computat Linguist Antonio Zampolli -
isi.contributor.subaffiliation Inst Clin Physiol -
isi.contributor.subaffiliation Inst Computat Linguist Antonio Zampolli -
isi.contributor.subaffiliation Inst Computat Linguist Antonio Zampolli -
isi.contributor.subaffiliation Inst Computat Linguist Antonio Zampolli -
isi.contributor.subaffiliation Inst Computat Linguist Antonio Zampolli -
isi.contributor.surname Taxitari -
isi.contributor.surname Cappa -
isi.contributor.surname Ferro -
isi.contributor.surname Marzi -
isi.contributor.surname Nadalini -
isi.contributor.surname Pirrelli -
isi.date.issued 2020 *
isi.description.abstracteng The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child's reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills. *
isi.description.allpeopleoriginal Taxitari, L; Cappa, C; Ferro, M; Marzi, C; Nadalini, A; Pirrelli, V; *
isi.document.sourcetype WOS.ISTP *
isi.document.type Proceedings Paper *
isi.document.types Proceedings Paper *
isi.identifier.doi 10.1109/CIST49399.2021.9357173 *
isi.identifier.isi WOS:000657322100052 *
isi.journal.journaltitle 2020 6TH IEEE CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'20) *
isi.journal.journaltitleabbrev COLLOQ INF SCI TECH *
isi.language.original English *
isi.publisher.place 345 E 47TH ST, NEW YORK, NY 10017 USA *
isi.relation.firstpage 302 *
isi.relation.lastpage 307 *
isi.title Using mobile technology for reading assessment *
scopus.category 1711 *
scopus.category 1706 *
scopus.category 1803 *
scopus.category 1802 *
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60009071 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.afid 60021199 -
scopus.contributor.auid 56681115400 -
scopus.contributor.auid 56789742800 -
scopus.contributor.auid 15759406100 -
scopus.contributor.auid 36621334800 -
scopus.contributor.auid 57192941272 -
scopus.contributor.auid 14833305800 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid 109964314 -
scopus.contributor.dptid -
scopus.contributor.dptid 109964314 -
scopus.contributor.dptid 109964314 -
scopus.contributor.dptid 109964314 -
scopus.contributor.dptid 109964314 -
scopus.contributor.name Loukia -
scopus.contributor.name Claudia -
scopus.contributor.name Marcello -
scopus.contributor.name Claudia -
scopus.contributor.name Andrea -
scopus.contributor.name Vito -
scopus.contributor.subaffiliation Institute for Computational Linguistics Antonio Zampolli; -
scopus.contributor.subaffiliation Institute of Clinical Physiology; -
scopus.contributor.subaffiliation Institute for Computational Linguistics Antonio Zampolli; -
scopus.contributor.subaffiliation Institute for Computational Linguistics Antonio Zampolli; -
scopus.contributor.subaffiliation Institute for Computational Linguistics Antonio Zampolli; -
scopus.contributor.subaffiliation Institute for Computational Linguistics Antonio Zampolli; -
scopus.contributor.surname Taxitari -
scopus.contributor.surname Cappa -
scopus.contributor.surname Ferro -
scopus.contributor.surname Marzi -
scopus.contributor.surname Nadalini -
scopus.contributor.surname Pirrelli -
scopus.date.issued 2020 *
scopus.description.abstracteng The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child's reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills. *
scopus.description.allpeopleoriginal Taxitari L.; Cappa C.; Ferro M.; Marzi C.; Nadalini A.; Pirrelli V. *
scopus.differences scopus.publisher.name *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.description.allpeopleoriginal *
scopus.differences scopus.description.abstracteng *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.identifier.isbn *
scopus.differences scopus.relation.conferenceplace *
scopus.differences scopus.relation.volume *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.doi 10.1109/CiSt49399.2021.9357173 *
scopus.identifier.eissn 2327-1884 *
scopus.identifier.isbn 9781728166469 *
scopus.identifier.pui 634718843 *
scopus.identifier.scopus 2-s2.0-85103834603 *
scopus.journal.sourceid 21100400809 *
scopus.language.iso eng *
scopus.publisher.name Institute of Electrical and Electronics Engineers Inc. *
scopus.relation.article 9357173 *
scopus.relation.conferencedate 2020 *
scopus.relation.conferencename 6th International IEEE Congress on Information Science and Technology, CiSt 2020 *
scopus.relation.conferenceplace mar *
scopus.relation.firstpage 302 *
scopus.relation.lastpage 307 *
scopus.relation.volume 2020- *
scopus.subject.keywords Cloud computing; Mobile technology; NLP; Reading assessment; Reading research; Special education needs; *
scopus.title Using mobile technology for reading assessment *
scopus.titleeng Using mobile technology for reading assessment *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
Using_mobile_technology_for_reading_assessment.pdf

solo utenti autorizzati

Descrizione: VoR
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 602.19 kB
Formato Adobe PDF
602.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/501841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact