Susceptibility to proteolytic activity is a critical limitation for food-derived peptides possibly influencing human physiological processes. This study explores the ex vivo stability and degradation kinetics of the milk-derived opioid peptide β-casomorphin-7 (BCM7) in human blood. Blood specimens collected from three healthy volunteers were individually spiked with synthetic BCM7 and sampled at seven time points over 2 h. Liquid chromatography-electrospray-high resolution tandem mass spectrometry was used to monitor the stability of BCM7 and the formation of its hydrolytic fragments. Human plasma peptidases rapidly hydrolyzed BCM7 generating inactive peptides with similar sharp degradation kinetics across the blood of different individuals. The estimated plasma half-life (t1/2) value of BCM7 ranged from 35 to 40 min. The peptide degradation pattern pointed to prolyl oligopeptidase, prolidase, and dipeptidyl peptidase as the primary enzyme candidates responsible for BCM7 hydrolysis. Overall, the findings of this study suggest that BCM7 cannot exert systemic effects in humans.

Ex vivo degradation of β-Casomorphin-7 by human plasma peptidases: Potential implications for peptide systemic effects

De Pascale, Sabrina
Primo
;
Picariello, Gianluca;Dario Troise, Antonio;Caira, Simonetta
;
Scaloni, Andrea
;
2024

Abstract

Susceptibility to proteolytic activity is a critical limitation for food-derived peptides possibly influencing human physiological processes. This study explores the ex vivo stability and degradation kinetics of the milk-derived opioid peptide β-casomorphin-7 (BCM7) in human blood. Blood specimens collected from three healthy volunteers were individually spiked with synthetic BCM7 and sampled at seven time points over 2 h. Liquid chromatography-electrospray-high resolution tandem mass spectrometry was used to monitor the stability of BCM7 and the formation of its hydrolytic fragments. Human plasma peptidases rapidly hydrolyzed BCM7 generating inactive peptides with similar sharp degradation kinetics across the blood of different individuals. The estimated plasma half-life (t1/2) value of BCM7 ranged from 35 to 40 min. The peptide degradation pattern pointed to prolyl oligopeptidase, prolidase, and dipeptidyl peptidase as the primary enzyme candidates responsible for BCM7 hydrolysis. Overall, the findings of this study suggest that BCM7 cannot exert systemic effects in humans.
2024
Istituto di Scienze dell'Alimentazione - ISA
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
Systemic effects
Peptide degradation
β-Casomorphin-7 (BCM7)
Human plasma peptidases
Hydrolytic enzymes
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1756464624000069-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact