Silicon carbide (SiC) is the most mature wide band-gap semiconductor and is currently employed for the fabrication of high-efficiency power electronic devices, such as diodes and transistors. In this context, selective doping is one of the key processes needed for the fabrication of these devices. This paper concisely reviews the main selective doping techniques for SiC power devices technology. In particular, due to the low diffusivity of the main impurities in SiC, ion implantation is the method of choice to achieve selective doping of the material. Hence, most of this work is dedicated to illustrating the main features of n-type and p-type ion-implantation doping of SiC and discussing the related issues. As an example, one of the main features of implantation doping is the need for post-implantation annealing processes at high temperatures (above 1500◦C) for electrical activation, thus having a notable morphological and structural impact on the material and, hence, on some device parameters. In this respect, some specific examples elucidating the relevant implications on devices’ performances are reported in the paper. Finally, a short overview of recently developed non-conventional doping and annealing techniques is also provided, although these techniques are still far from being applied in large-scale devices’ manufacturing.
Selective Doping in Silicon Carbide Power Devices
Roccaforte, Fabrizio
;Fiorenza, Patrick;Vivona, Marilena;Greco, Giuseppe;Giannazzo, Filippo
2021
Abstract
Silicon carbide (SiC) is the most mature wide band-gap semiconductor and is currently employed for the fabrication of high-efficiency power electronic devices, such as diodes and transistors. In this context, selective doping is one of the key processes needed for the fabrication of these devices. This paper concisely reviews the main selective doping techniques for SiC power devices technology. In particular, due to the low diffusivity of the main impurities in SiC, ion implantation is the method of choice to achieve selective doping of the material. Hence, most of this work is dedicated to illustrating the main features of n-type and p-type ion-implantation doping of SiC and discussing the related issues. As an example, one of the main features of implantation doping is the need for post-implantation annealing processes at high temperatures (above 1500◦C) for electrical activation, thus having a notable morphological and structural impact on the material and, hence, on some device parameters. In this respect, some specific examples elucidating the relevant implications on devices’ performances are reported in the paper. Finally, a short overview of recently developed non-conventional doping and annealing techniques is also provided, although these techniques are still far from being applied in large-scale devices’ manufacturing.File | Dimensione | Formato | |
---|---|---|---|
materials2021a.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.93 MB
Formato
Adobe PDF
|
5.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.